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Abstract: In this paper, we propose the so-called 
“SVM’ed-kernel function” and its use in SVM 
classification problems. This kernel function is itself a 
support vector machine classifier that is learned 
statistically from data. We show that the new kernel 
manages to change the classical methodology of defining 
a feature vector for each pattern. One will only need to 
define features representing the similarity between two 
patterns allowing many details to be captured in a 
concise way. The new proposed kernel shows very 
promising results. It opens the door for new feature 
definitions that could be created in various machine 
learning problems where similarity between patterns can 
be formulated more suitably. 

Index Terms: Support Vector Machine, Kernel, 
Similarity 
 
 
I. INTRODUCTION  
 

In the classical classification framework, training 
patterns are first converted to feature vectors which 
are then used to train the classifier.  At the point of 
replacing the pattern by a feature vector representing 
it, a significant amount of information is lost. 

 In addition, sometimes representing the pattern by 
a feature vector could be problematic. For example if 
we would like to represent a document by a feature 
vector, we could use a dictionary to create a feature 
vector of word. This could lead to a huge number of 
features. An alternative and seemingly more efficient 
way is to define a feature vector that represents the 
similarity between a pair of documents. In such case 
we could just define a vector that consists of a few 
simple and effective high level features. This 
similarity vector could, for example, consists of the 
number of common stemmed words between the pair 
of documents, the number of common named entities, 
the number of common semantic relations, and finally 
a binary feature showing whether the two documents 
were extracted from the same source or not. This 
suggests that a significant achievement could be 
acquired, if we could change the classification 
framework to using feature vectors that represent the 
similarity between a pair of patterns rather than using 
feature vectors that represent single patterns. 

SVM is a suitable classifier for applying this new 
framework. In SVM, the classical kernels take two 
feature vectors as input (each feature vector represents 
a pattern) and return a real number representing the 
similarity between them [1]. In order to make use of 

high level similarity features as stated previously, a 
domain expert is required to invent a user defined 
kernel which is an algorithm that measures the 
similarity between two patterns without converting 
them to feature vectors. The domain expert is 
required in order to determine the contribution of 
each component similarity feature to the final 
similarity measure. This is a time consuming task 
since it has to be done for each problem. Moreover, a 
hard quantitative approach would lead to more 
consistent performance, and allows the use of cutting 
edge optimization methods. 

In this paper we propose a new kernel function that 
is learned statistically from data. The input of this 
new kernel function will be only one feature vector 
representing the similarity between the two input 
patterns. We name our new proposed kernel the 
SVM’ed-Kernel for a reason that will be clear.  

We propose a method to automatically generate a 
recreated training set from the original training set. 
The recreated training set is then used to learn the 
SVM’ed-Kernel. Interestingly, the SVM’ed-Kernel 
will be learned as a separate SVM classification 
problem. Once trained, the SVM’ed-Kernel will then 
be used as a kernel function in the original 
classification SVM problem.  

Using the SVM’ed-Kernel, we need not define 
features to represent a single pattern. We will only 
need to define features that represent the similarity 
between a pair of patterns. This allows novel features 
to be defined that could not have been defined using 
the classical feature definition framework.  

Moreover, a simple similarity feature between a 
pair of patterns could eliminate a large number of 
features representing a single pattern as it was shown 
in the example of representing a document by a 
feature vector. This contributes to dimensionality 
reduction. 
Figures 1 and 2 show the classical kernel and the 
SVM’ed-Kernel block diagrams respectively. 

In the SVM’ed-Kernel, the contribution of each 
similarity feature to the final similarity measure is 
learned statistically from the recreated training set. 
This eliminates the need for a domain expert, allows 
the definition of novel high level similarity features, 
and leads to optimizing the contributions of the 
different similarities. 
    The proposed kernel could be used in Natural 
Language Processing, Machine Vision, and 
Bioinformatics applications that suffer from the loss 
of a significant amount of information at the point 
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where the pattern is replaced by a feature vector 
representing it. We tested our SVM’ed-Kernel in two 
classification problems and showed that it gives very 
promising results. 

 
 

 
Fig.1 –Classical Kernel block diagram.  

 
 

 
Fig.2 –SVM’ed-Kernel block diagram. 

 
 
II. RELATED WORK  
 

Many Kernels have been proposed in the SVM 
literature. We divide the related work into general 
kernels and specific user-defined kernels. The general 
kernels are not defined for a specific problem. On the 
other hand, the user defined kernels are domain 
dependent and they are defined specifically for the 
problem at hand. Our proposed SVM’ed-Kernel falls 
in the general kernels class. 

From among the general proposed kernels, Thadani 
et al [2] creates a kernel function suitable for the 
training data using a genetic algorithm mechanism. 
They showed that their genetic kernel has good 
generalization abilities when compared with the 
polynomial and the radial basis kernel functions. Kong 
et al [3] proposed the autocorrelation kernel by 
borrowing this concept from signal processing. The 
autocorrelation functions give comparable results to 
the RBF kernel when used to classify some UCI 
datasets. Ye et al [4] proposed an orthogonal 
Chebyshev kernel function. Chebyshev polynomials 
are first constructed through Chebyshev formulae. 
Then based on these polynomials Chebyshev kernels 
are created satisfying Mercer condition. They showed 
that it is possible to reduce the number of support 
vectors using this kernel. In addition, they require the 
features to be normalized from -1 to 1. George et al 
[5] proposed a Sinc-Cauchy hybrid wavelet kernel and 
shows that it is admissible which means that it is 

positive definite [1]. They used it for the 
classification of Cardiac Single Photon Emission 
Computed Tomography images and Cardiac 
Arrhythmia signals. Their experimental results 
showed that promising generalization can be achieved 
with the hybrid kernel compared to conventional 
kernels.  Wang et al [6] proposed the Weighted 
Mahalanobis Distance Kernels.  They first find the 
data structure for each class in the input space via 
agglomerative hierarchical clustering and then 
construct the weighted Mahalanobis distance kernels 
which are affected by the size of clusters they reside 
in. They showed that, although WDM kernels are not 
guaranteed to be positive definite or conditionally 
positive definite, satisfactorily classification results 
can still be achieved because regularizes in SVMs 
with WDM kernels are empirically positive in 
pseudo-Euclidean spaces.  Boughorbel et al [7] 
proposed the log kernel which seemed particularly 
interesting for images. They proved that the log 
kernel is conditionally positive definite. Moreover, 
they showed from experimentations that using 
conditionally positive definite kernels allows us to 
outperform classical positive definite kernels. 

From among the specific user-defined kernels, XU 
et al [8] proposed using the weighted Levenshtein 
distance as a kernel function for strings. They used 
the UCI splice site recognition dataset for testing their 
proposed specific kernel which got the best results in 
this problem. Wu et al [9] proposed a new user-
defined kernel for RNA classification. They showed 
that the new kernel takes advantage of both global 
and local structural information in RNAs. Their 
experimental results showed that the new kernel 
outperforms existing kernels when used to classify 
non-coding RNA sequences. Siolas et al [10] 
proposed using a new metric between documents 
based on a priori semantic knowledge about words.  
They incorporated this metric into the definition of 
radial basis function which improved the 
performance. Yan et al [11] proposed the position 
weight subsequences kernel (PWSK) that could be 
used for identifying gene sequences. This kernel was 
used for splice site identification and the performance 
was better than that of the string subsequences kernel 
(SSK). Cuturi et al [12] proposed a mutual 
information kernel for strings which borrows 
techniques from information theory and data 
compression. They showed that their kernel reported 
encouraging classification results on a standard 
protein homology detection experiment.  
   Our proposed kernel falls in the general kernels 
class while having the ability of defining similarity 
features which have been only used in specific user 
defined kernels. Moreover, it does not need a domain 
expert to determine the contribution of each similarity 
feature to the similarity measure since the kernel is 
learned statistically from data which is extracted 
automatically from the original training set. 
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III. PRELIMINARIES  
 

The basic idea of SVM classifiers is to map a given 
data set from input space into higher dimensional 
feature space F, called dot product space, via a map 
functionφ , where 

FRN →:φ                                                          (3.1) 

Then, it performs a linear classification in the higher 
dimensional space F. This requires the evaluation of 
dot products: 

))(),((),( yxyxK φφ= ,                                    (3.2)          

Where ),( yxK  is called the kernel function. Since 
F is high dimensional, then the right hand side of 
equation (3.2) will be very expensive to compute [1]. 
Therefore, kernel functions are used to compute the 
dot product in the feature space using the input 
parameters which means that the mapping to F is done 
implicitly. A kernel function returns a real number 
representing the similarity of its two input patterns. 
There are many types of kernels such as the RBF 
kernel, given by: 

22 2/||||),( σxix
i exxK −−=                                    (3.3)                 

Other similar kernels are also widely used. 
The function used for the assignment of new objects 

to one of the two classes is called the decision 
function which takes the form: 

 

         

                                                                                (3.4) 

Where, l  denotes the number of training patterns 
 x  denotes unseen pattern vector 
 ix denotes the thi  training pattern vector 

 iy denotes label of the thi  training pattern  
 b  denotes constant offset (or threshold) 
 1 and 1−  are the labels of decision classes 
The parameters iα  are computed as the solution of a 
quadratic programming problem of the form: 

2

Rb,w
||||

2
1(w) minimize w=

∈ℵ∈
τ               (3.5)             

Subject to 1),( ≥+ bxwy ii   for all      li ,...,1=        
Where, 
w  denotes weight vector in feature space 
 ℵ denotes feature space 
R  denotes set of real 

 τ  denotes objective function 
The computed non-zeros iα ’s correspond to 

training patterns known as support vectors. Finally, 
substituting the values of iα  in (3.4) produces the 
decision function hyper-plane in the feature space 
that corresponds to a nonlinear function in the input 
space as shown in figure 3. Thus, the classification 
problem becomes easier to be solved in the higher 
dimensional space than in the lower dimensional 
space [1]. 

 
 

 
Fig.3 –Mapping data to the higher dimensional feature 

space. 
 
IV. THE SVM’ED-KERNEL 
 

The SVM’ed-Kernel could be used in any machine 
learning task that requires a kernel function. In this 
paper we illustrate its use as a kernel function for 
support vector machine classification problems.  

Internally, the SVM’ed-Kernel is constructed as a 
support vector machine classification problem. 
Therefore we have two SVMs; the first one is the 
original SVM classification problem which we will 
call it the original SVM, while the other is the one 
used as a kernel function which we call it the 
SVM’ed-Kernel. 

This SVM’ed-Kernel will be trained using a 
recreated training set extracted from the original one.  
The steps to create and use the SVM’ed-Kernel are: 
A. Define a feature vector representing the similarity 
between a pair of patterns, B. Automatically generate 
the recreated training set from the original one. C. 
Train the SVM’ed-Kernel as a normal classification 
problem using the recreated training set in B. D. Use 
the trained SVM’ed-kernel as a kernel function in the 
original SVM problem. E. Train the original SVM 
using the SVM’ed-Kernel.  

We now explain each step in details. In step A, We 
define a feature vector that represents the similarity 
between two patterns. For example in a text 
categorization classification problem where we need 
to classify a document according to whether it is 
related to either sport or politics. One could define a 
similarity feature vector of two features. The first 
feature could be the number of common words after 
stemming, while the second one could be the number 
of common semantic relations. 

In step B, assume that we have an original simple 
training set similar to that in table one. 
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To create the recreated training set that will be 
used to train the SVM’ed-Kernel, we select every pair 
of patterns from the original training set (order is not 
important). So we have pattern 1 and pattern 2, pattern 
1 and pattern 3, pattern 2 and pattern 3, pattern 2 and 
pattern 4, and so on. We label each pair as being 
matching (1) if the two patterns have the same label in 
the original training set or not matching (-1) if they 
have different labels. Table two illustrates the 
recreated training set. One can see here that the 
recreated training set is of larger size than the original 
training set.  

Table 1. The original training set 

Patterns Class label (1 or-1) 
pattern 1 1 
pattern 2 -1 
pattern 3 1 
pattern 4 -1 
pattern 5 1 
pattern 6 1 

 

Table 2. The recreated training set 

Patterns Class label (1 or-1) 
pattern 1 and pattern 2 not matching (-1) 
pattern 1 and pattern 3 matching  (1) 
pattern 1 and pattern 4 not matching (-1) 
pattern 1 and pattern 5 matching  (1) 
pattern 1 and pattern 6 matching  (1) 
pattern 2 and pattern 3 not matching (-1) 
pattern 2 and pattern 4 matching  (1) 
pattern 2 and pattern 5 not matching (-1) 
pattern 2 and pattern 6 not matching (-1) 
pattern 3 and pattern 4 not matching (-1) 
pattern 3 and pattern 5 matching  (1) 
pattern 3 and pattern 6 matching  (1) 
pattern 4 and pattern 5 not matching (-1) 
pattern 4 and pattern 6 not matching (-1) 
pattern 5 and pattern 6 matching  (1) 

 
In step C, we first convert each pair in the recreated 

training set, created in step B, to a feature vector using 
the similarity feature vector definition we have 
defined in step A. After that, we train the SVM’ed-
Kernel as a normal SVM classification problem using 
the recreated training set and any arbitrary kernel. The 
output of this SVM classifier will be a label indicating 
whether the two input patterns are matching or not. 

After training, we save the SVM trained as our 
SVM’ed-Kernel after removing the decision 
component from the function in equation (3.4) to be 
in the form 

bxxKyxf ii

l

i
i +=!

=
),()(

1
α                           (4.1)                        

The decision component was removed because we 
are interested in the real value returned from (4.1), 
which represents how confident we are in the match. 
A larger returned value represents a better match 
(high similarity) and vice versa. Figure 4 shows three 
pairs, from the recreated training set, and their 
locations from the decision boundary of the SVM’ed-
Kernel. When substituting in equation (4.1), pair 
one’s similarity feature vector will return a positive 
number indicating high similarity between this pair. 
On the other hand, pair two’s similarity feature vector 
will return a smaller positive number indicating that 
this pair is less similar than pair one. Finally, pair 
three’s vector will return a negative number 
indicating low similarity between this pair.  

The training patterns in the recreated training set 
were used to determine the maximal margin 
classifier. The distance of a new pair from the 
maximal margin classifier decision boundary is a 
direct measure of the similarity between the two 
patterns of this pair due to the way we formed the 
recreated training set in B and the definition of the 
similarity feature vector in A. 

 
Fig.4 –Three pairs and their locations from the decision 

boundary of the SVM’ed-Kernel. 
 

In step D, we use our trained SVM in C as our 
kernel function in the original SVM problem.  In our 
work we have added an offset to the output of the 
SVM’ed-Kernel to have all the patterns on the 
positive side of the SVM’ed-Kernel decision 
boundary. 

In step E, we train our original SVM using our 
SVM’ed-Kernel and the original training set. After 
training the original SVM, the original SVM model is 
ready for the real operation phase.  

We conclude here that the original SVM classifier 
component does not require the pattern to be 
extracted to a feature vector on its own. It takes the 
form: 
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l bpatternipatternSVKyiipatternf ),(..)( α

                            (4.2) 

where SVK is the SVM’ed-Kernel in the form: 

')),,((..),( '! +=
j

l bmjyxmkyjjpatternypatternxSVK α
                                                                                                                    

(4.3)  
Where,  
 mj denotes a similarity feature vector of a support 
vector pattern for the SVM’ed-Kernel. 
 ),( yxm denotes the feature vector representing 
similarity between patternx  and patterny . 

yjyi,  denote the labels of the thi and thj  patterns 
respectively. 
b , 'b  denote constant offsets (or thresholds). 
k  denotes an arbitrary kernel function. 
l 'l  denote the number of training patterns in the 
original and the recreated training sets respectively. 
The parameters iα  and jα  are computed as the 
solutions of quadratic programming problems.  

Figure 5 shows a block diagram of the original 
SVM classifier that makes use of the SVM’ed-Kernel 
which in turn makes use of an arbitrary kernel. 
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Fig.5 –A block diagram showing the original SVM classifier 
that makes use of the SVM’ed-Kernel which in turn makes 

use of an arbitrary kernel. 
 
V. EXPERIMENTAL SETUP 
 

We define the experimental setup of two 
classification problems. In the first one we show that 
the SVM’ed-Kernel is capable of using the already 
existing feature definitions. In the second, we show its 
ability to define features that could not have been 
defined using the classical kernels. 

The first classification problem is a hand drawn 
circle-triangle classification problem.  The input is a 
hand drawn shape and the output is its classification as 
a circle or a triangle.  We assumed that the unseen 

shape should be either a circle or a triangle. Figure 6 
shows a hand-drawn circle. 

 
Fig.6 –A hand-drawn circle. 

 
The data set used was formed from the circles and 

triangles patterns created by Refaat et al [13] after  
increasing its size to be 222 circles and 222 triangles. 
We divided the dataset set randomly into 400 patterns 
for training and 44 patterns for testing. We compared 
our SVM’ed-Kernel to different kernels with different 
parameters. We used SVM Light [14] in our 
simulations.  

A number of features are extracted from each 
shape for the purpose of serving as inputs to the 
classifier. The features were selected to be size and 
orientation independent [13]. The basic shape 
features used are Ach , the area of the convex hull; 
Pch , its perimeter; Aer the area of the rectangle 
enclosing the convex hull of the shape and having the 
minimum area; Alq , the area of the maximum area 
inscribed quadrilateral that fits inside the convex hull 
of the shape [15]; Alt , the area of the maximum area 
inscribed triangle that fits inside the convex hull of 
the shape [15]; Plt , its perimeter; Her ,  the height 
of the rectangle enclosing the convex hull of the 
shape and having the minimum area; and , Wer its 
width. 
 The features used for all kernels except the SVM’ed-
Kernel are 

• AchPch /2  (Thinness ratio) 
• AerAch /  
• AerAlq /  
• AchAlq /  
• AlqAlt / . 
• AchAlt /  
• PchPlt /  
• WerHer /   

 The similarity feature vector definition that is 
defined for the sake of the SVM’ed-Kernel was 
defined simply to be the subtraction of the two 
feature vectors of the two input patterns. In this 
problem, we did not define new similarity features 
that make use of the benefit of the SVM’ed- Kernel to 
evaluate our kernel power of making use of the 
already existing feature definition that was defined 
for a single pattern. 

In the second classification problem, we used the 
Mushroom problem from the UCI Machine Learning 
Repository. This data set includes descriptions of 
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hypothetical samples corresponding to 23 species of 
gilled mushrooms. Each species is identified as 
definitely edible, definitely poisonous, or of unknown 
edibility and not recommended. This latter class was 
combined with the poisonous one.  

The attributes available for each pattern were the 
cap-shape, the cap-surface, the cap-color, the bruises, 
the odor, the gill-attachment, the gill-spacing, the gill-
size, the gill-color, the stalk-shape, the stalk-root, the  
stalk-surface-above-ring, the stalk-surface-below-ring, 
the stalk-color-above-ring, the stalk-color-below-ring, 
the veil-type, the veil-color, the ring-number, the ring-
type, the spore-print-color ,the population and the 
habitat.  

Each pattern is described by 22 characters; each of 
them is describing an attribute. If we are going to 
define a feature vector for each pattern, we will need 
to encode such characters. Using the SVM’ed-Kernel, 
we do not need to define a feature vector for each 
pattern. We defined the similarity feature vector as a 
binary vector of 22 features. Feature i   takes the value 
of one if attribute i  is the same in the two input 
patterns, otherwise it takes zero. This eliminated the 
burden of encoding the character attributes using an 
elegant definition of the similarity feature vector in a 
binary simple form. 

While creating the similarity feature vector, we 
handle the missing attributes in the dataset by putting 
the value of one if both attributes are missing. If only 
one attribute is missing we put zero. We divided the 
data set into 67 % for training and 33% for testing.  

Interestingly, the recreated training set had more 
than twenty million combinations, so we have 
randomly sampled about 11% of this recreated 
training set to train our SVM’ed-Kernel due to size 
limitations in the SVM Light package. 
    In both classification problems the SVM’ed-Kernel 
uses internally the RBF kernel with the Gamma 
parameter set to two.  We note here that any kernel 
could be used by the SVM’ed-Kernel. 
 
VI. TESTING RESULTS 
 
    For the hand drawn circle-triangle problem, we 
used the SVM’ed-Kernel with just subtracting the two 
feature vectors of the two input patterns. We also used 
the polynomial kernel (Poly) with the d parameter set 
to 2, 3 and 4; the RBF kernel with the gamma 
parameter set to 1, 2, 0.1 and 0.01; and the linear 
kernel. Table three shows the testing results of the 
circle-triangle problem. 

The SVM’ed-Kernel gives comparable testing 
accuracy to all other kernels with respect to the test set 
size and gives the least number of support vectors. 
The SVM’ed-Kernel has only 6 support vectors 
whereas all other kernels have at least 27 support 
vectors. This shows that the SVM’ed-Kernel ability of 
generalization outperforms all other classical kernels. 
In addition, the SVM’ed-Kernel outperforms all other 
kernels in the Joachim Xi alpha [16] estimate of the 

recall and shows very promising Joachim Xi alpha of 
the precision.  

  We note here that we did not make use of 
the benefit of defining features of similarity between 
a pair of patterns but only showed that the SVM’ed-
Kernel is capable of using the original feature 
definitions that were already defined to all problems 
before.  
In the Mushroom problem, Kim et al [17] reported 
99.51 %, 96.61 %, and 99.53 % ten-fold cross 
validation accuracies using different SVM variations 
to avoid training with the whole dataset. In order to 
make the problem harder; we divided the data set into 
only 67 % for training and 33% for testing. After 
generating the recreated training set, we chose 11% 
of its patterns randomly to train our SVM’ed- Kernel. 
The accuracy on the test set using our trained 
SVM’ed-Kernel turned out to be 99.71 %. The 
precision was 99.06 % while the recall was 98.49 %. 
We showed here that the SVM’ed-Kernel was able to 
generalize well even while training it with only 11% 
of the recreated training set. In addition, we showed 
that the SVM’ed-Kernel eliminated the burden of 
encoding the character attributes using an elegant 
definition of the similarity feature vector in a binary 
simple form. 
 
Table 3. Hand-drawn circle-triangle problem testing results 

The 
kernel 
used 

Accur-
acy on 

the 
test set 

XiAlpha 
estimate 

of the 
recall 

XiAlpha 
estimate 

of the 
precision 

Num. 
of 

support 
vectors 

SVM’ed 97.73 99.5 99.5 6 

Poly d=2 97.73 91.5 91.5 34 

Poly d=3 97.73 90 90 40 

Poly d=4 97.73 81 81 76 

RBF g=1 100 97.5 100 68 

RBF g=2 100 97 100 84 

RBF g=.1 100 98.5 98.99 42 

RBFg=.01 100 94.5 94.97 27 

Linear 97.73 86 86 56 
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