
THE SUPPORT VECTOR MACHINED KERNEL
Khaled S. Refaat1, Member, IEEE

1 Khaled S. Refaat is with the Computer Engineering Department,
Faculty of Engineering, Cairo University, Egypt.
 (e-mail: khaled.saeed84@gmail.com)

Abstract: In this paper, we propose the so-called
“SVM’ed-kernel function” and its use in SVM
classification problems. This kernel function is itself a
support vector machine classifier that is learned
statistically from data. We show that the new kernel
manages to change the classical methodology of defining
a feature vector for each pattern. One will only need to
define features representing the similarity between two
patterns allowing many details to be captured in a
concise way. The new proposed kernel shows very
promising results. It opens the door for new feature
definitions that could be created in various machine
learning problems where similarity between patterns can
be formulated more suitably.

Index Terms: Support Vector Machine, Kernel,
Similarity

I. INTRODUCTION

In the classical classification framework, training
patterns are first converted to feature vectors which
are then used to train the classifier. At the point of
replacing the pattern by a feature vector representing
it, a significant amount of information is lost.

 In addition, sometimes representing the pattern by
a feature vector could be problematic. For example if
we would like to represent a document by a feature
vector, we could use a dictionary to create a feature
vector of word. This could lead to a huge number of
features. An alternative and seemingly more efficient
way is to define a feature vector that represents the
similarity between a pair of documents. In such case
we could just define a vector that consists of a few
simple and effective high level features. This
similarity vector could, for example, consists of the
number of common stemmed words between the pair
of documents, the number of common named entities,
the number of common semantic relations, and finally
a binary feature showing whether the two documents
were extracted from the same source or not. This
suggests that a significant achievement could be
acquired, if we could change the classification
framework to using feature vectors that represent the
similarity between a pair of patterns rather than using
feature vectors that represent single patterns.

SVM is a suitable classifier for applying this new
framework. In SVM, the classical kernels take two
feature vectors as input (each feature vector represents
a pattern) and return a real number representing the
similarity between them [1]. In order to make use of

high level similarity features as stated previously, a
domain expert is required to invent a user defined
kernel which is an algorithm that measures the
similarity between two patterns without converting
them to feature vectors. The domain expert is
required in order to determine the contribution of
each component similarity feature to the final
similarity measure. This is a time consuming task
since it has to be done for each problem. Moreover, a
hard quantitative approach would lead to more
consistent performance, and allows the use of cutting
edge optimization methods.

In this paper we propose a new kernel function that
is learned statistically from data. The input of this
new kernel function will be only one feature vector
representing the similarity between the two input
patterns. We name our new proposed kernel the
SVM’ed-Kernel for a reason that will be clear.

We propose a method to automatically generate a
recreated training set from the original training set.
The recreated training set is then used to learn the
SVM’ed-Kernel. Interestingly, the SVM’ed-Kernel
will be learned as a separate SVM classification
problem. Once trained, the SVM’ed-Kernel will then
be used as a kernel function in the original
classification SVM problem.

Using the SVM’ed-Kernel, we need not define
features to represent a single pattern. We will only
need to define features that represent the similarity
between a pair of patterns. This allows novel features
to be defined that could not have been defined using
the classical feature definition framework.

Moreover, a simple similarity feature between a
pair of patterns could eliminate a large number of
features representing a single pattern as it was shown
in the example of representing a document by a
feature vector. This contributes to dimensionality
reduction.
Figures 1 and 2 show the classical kernel and the
SVM’ed-Kernel block diagrams respectively.

In the SVM’ed-Kernel, the contribution of each
similarity feature to the final similarity measure is
learned statistically from the recreated training set.
This eliminates the need for a domain expert, allows
the definition of novel high level similarity features,
and leads to optimizing the contributions of the
different similarities.
 The proposed kernel could be used in Natural
Language Processing, Machine Vision, and
Bioinformatics applications that suffer from the loss
of a significant amount of information at the point

978-1-4244-3861-7/09/$25.00 ©2009 IEEE1978

where the pattern is replaced by a feature vector
representing it. We tested our SVM’ed-Kernel in two
classification problems and showed that it gives very
promising results.

Fig.1 –Classical Kernel block diagram.

Fig.2 –SVM’ed-Kernel block diagram.

II. RELATED WORK

Many Kernels have been proposed in the SVM
literature. We divide the related work into general
kernels and specific user-defined kernels. The general
kernels are not defined for a specific problem. On the
other hand, the user defined kernels are domain
dependent and they are defined specifically for the
problem at hand. Our proposed SVM’ed-Kernel falls
in the general kernels class.

From among the general proposed kernels, Thadani
et al [2] creates a kernel function suitable for the
training data using a genetic algorithm mechanism.
They showed that their genetic kernel has good
generalization abilities when compared with the
polynomial and the radial basis kernel functions. Kong
et al [3] proposed the autocorrelation kernel by
borrowing this concept from signal processing. The
autocorrelation functions give comparable results to
the RBF kernel when used to classify some UCI
datasets. Ye et al [4] proposed an orthogonal
Chebyshev kernel function. Chebyshev polynomials
are first constructed through Chebyshev formulae.
Then based on these polynomials Chebyshev kernels
are created satisfying Mercer condition. They showed
that it is possible to reduce the number of support
vectors using this kernel. In addition, they require the
features to be normalized from -1 to 1. George et al
[5] proposed a Sinc-Cauchy hybrid wavelet kernel and
shows that it is admissible which means that it is

positive definite [1]. They used it for the
classification of Cardiac Single Photon Emission
Computed Tomography images and Cardiac
Arrhythmia signals. Their experimental results
showed that promising generalization can be achieved
with the hybrid kernel compared to conventional
kernels. Wang et al [6] proposed the Weighted
Mahalanobis Distance Kernels. They first find the
data structure for each class in the input space via
agglomerative hierarchical clustering and then
construct the weighted Mahalanobis distance kernels
which are affected by the size of clusters they reside
in. They showed that, although WDM kernels are not
guaranteed to be positive definite or conditionally
positive definite, satisfactorily classification results
can still be achieved because regularizes in SVMs
with WDM kernels are empirically positive in
pseudo-Euclidean spaces. Boughorbel et al [7]
proposed the log kernel which seemed particularly
interesting for images. They proved that the log
kernel is conditionally positive definite. Moreover,
they showed from experimentations that using
conditionally positive definite kernels allows us to
outperform classical positive definite kernels.

From among the specific user-defined kernels, XU
et al [8] proposed using the weighted Levenshtein
distance as a kernel function for strings. They used
the UCI splice site recognition dataset for testing their
proposed specific kernel which got the best results in
this problem. Wu et al [9] proposed a new user-
defined kernel for RNA classification. They showed
that the new kernel takes advantage of both global
and local structural information in RNAs. Their
experimental results showed that the new kernel
outperforms existing kernels when used to classify
non-coding RNA sequences. Siolas et al [10]
proposed using a new metric between documents
based on a priori semantic knowledge about words.
They incorporated this metric into the definition of
radial basis function which improved the
performance. Yan et al [11] proposed the position
weight subsequences kernel (PWSK) that could be
used for identifying gene sequences. This kernel was
used for splice site identification and the performance
was better than that of the string subsequences kernel
(SSK). Cuturi et al [12] proposed a mutual
information kernel for strings which borrows
techniques from information theory and data
compression. They showed that their kernel reported
encouraging classification results on a standard
protein homology detection experiment.
 Our proposed kernel falls in the general kernels
class while having the ability of defining similarity
features which have been only used in specific user
defined kernels. Moreover, it does not need a domain
expert to determine the contribution of each similarity
feature to the similarity measure since the kernel is
learned statistically from data which is extracted
automatically from the original training set.

1979

III. PRELIMINARIES

The basic idea of SVM classifiers is to map a given
data set from input space into higher dimensional
feature space F, called dot product space, via a map
functionφ , where

FRN →:φ (3.1)

Then, it performs a linear classification in the higher
dimensional space F. This requires the evaluation of
dot products:

))(),((),(yxyxK φφ= , (3.2)

Where),(yxK is called the kernel function. Since
F is high dimensional, then the right hand side of
equation (3.2) will be very expensive to compute [1].
Therefore, kernel functions are used to compute the
dot product in the feature space using the input
parameters which means that the mapping to F is done
implicitly. A kernel function returns a real number
representing the similarity of its two input patterns.
There are many types of kernels such as the RBF
kernel, given by:

22 2/||||),(σxix
i exxK −−= (3.3)

Other similar kernels are also widely used.
The function used for the assignment of new objects

to one of the two classes is called the decision
function which takes the form:

 (3.4)

Where, l denotes the number of training patterns
 x denotes unseen pattern vector
 ix denotes the thi training pattern vector

 iy denotes label of the thi training pattern
 b denotes constant offset (or threshold)
 1 and 1− are the labels of decision classes
The parameters iα are computed as the solution of a
quadratic programming problem of the form:

2

Rb,w
||||

2
1(w) minimize w=

∈ℵ∈
τ (3.5)

Subject to 1),(≥+ bxwy ii for all li ,...,1=
Where,
w denotes weight vector in feature space
 ℵ denotes feature space
R denotes set of real

 τ denotes objective function
The computed non-zeros iα ’s correspond to

training patterns known as support vectors. Finally,
substituting the values of iα in (3.4) produces the
decision function hyper-plane in the feature space
that corresponds to a nonlinear function in the input
space as shown in figure 3. Thus, the classification
problem becomes easier to be solved in the higher
dimensional space than in the lower dimensional
space [1].

Fig.3 –Mapping data to the higher dimensional feature

space.

IV. THE SVM’ED-KERNEL

The SVM’ed-Kernel could be used in any machine
learning task that requires a kernel function. In this
paper we illustrate its use as a kernel function for
support vector machine classification problems.

Internally, the SVM’ed-Kernel is constructed as a
support vector machine classification problem.
Therefore we have two SVMs; the first one is the
original SVM classification problem which we will
call it the original SVM, while the other is the one
used as a kernel function which we call it the
SVM’ed-Kernel.

This SVM’ed-Kernel will be trained using a
recreated training set extracted from the original one.
The steps to create and use the SVM’ed-Kernel are:
A. Define a feature vector representing the similarity
between a pair of patterns, B. Automatically generate
the recreated training set from the original one. C.
Train the SVM’ed-Kernel as a normal classification
problem using the recreated training set in B. D. Use
the trained SVM’ed-kernel as a kernel function in the
original SVM problem. E. Train the original SVM
using the SVM’ed-Kernel.

We now explain each step in details. In step A, We
define a feature vector that represents the similarity
between two patterns. For example in a text
categorization classification problem where we need
to classify a document according to whether it is
related to either sport or politics. One could define a
similarity feature vector of two features. The first
feature could be the number of common words after
stemming, while the second one could be the number
of common semantic relations.

In step B, assume that we have an original simple
training set similar to that in table one.

1980

To create the recreated training set that will be
used to train the SVM’ed-Kernel, we select every pair
of patterns from the original training set (order is not
important). So we have pattern 1 and pattern 2, pattern
1 and pattern 3, pattern 2 and pattern 3, pattern 2 and
pattern 4, and so on. We label each pair as being
matching (1) if the two patterns have the same label in
the original training set or not matching (-1) if they
have different labels. Table two illustrates the
recreated training set. One can see here that the
recreated training set is of larger size than the original
training set.

Table 1. The original training set

Patterns Class label (1 or-1)
pattern 1 1
pattern 2 -1
pattern 3 1
pattern 4 -1
pattern 5 1
pattern 6 1

Table 2. The recreated training set

Patterns Class label (1 or-1)
pattern 1 and pattern 2 not matching (-1)
pattern 1 and pattern 3 matching (1)
pattern 1 and pattern 4 not matching (-1)
pattern 1 and pattern 5 matching (1)
pattern 1 and pattern 6 matching (1)
pattern 2 and pattern 3 not matching (-1)
pattern 2 and pattern 4 matching (1)
pattern 2 and pattern 5 not matching (-1)
pattern 2 and pattern 6 not matching (-1)
pattern 3 and pattern 4 not matching (-1)
pattern 3 and pattern 5 matching (1)
pattern 3 and pattern 6 matching (1)
pattern 4 and pattern 5 not matching (-1)
pattern 4 and pattern 6 not matching (-1)
pattern 5 and pattern 6 matching (1)

In step C, we first convert each pair in the recreated

training set, created in step B, to a feature vector using
the similarity feature vector definition we have
defined in step A. After that, we train the SVM’ed-
Kernel as a normal SVM classification problem using
the recreated training set and any arbitrary kernel. The
output of this SVM classifier will be a label indicating
whether the two input patterns are matching or not.

After training, we save the SVM trained as our
SVM’ed-Kernel after removing the decision
component from the function in equation (3.4) to be
in the form

bxxKyxf ii

l

i
i +=!

=
),()(

1
α (4.1)

The decision component was removed because we
are interested in the real value returned from (4.1),
which represents how confident we are in the match.
A larger returned value represents a better match
(high similarity) and vice versa. Figure 4 shows three
pairs, from the recreated training set, and their
locations from the decision boundary of the SVM’ed-
Kernel. When substituting in equation (4.1), pair
one’s similarity feature vector will return a positive
number indicating high similarity between this pair.
On the other hand, pair two’s similarity feature vector
will return a smaller positive number indicating that
this pair is less similar than pair one. Finally, pair
three’s vector will return a negative number
indicating low similarity between this pair.

The training patterns in the recreated training set
were used to determine the maximal margin
classifier. The distance of a new pair from the
maximal margin classifier decision boundary is a
direct measure of the similarity between the two
patterns of this pair due to the way we formed the
recreated training set in B and the definition of the
similarity feature vector in A.

Fig.4 –Three pairs and their locations from the decision

boundary of the SVM’ed-Kernel.

In step D, we use our trained SVM in C as our
kernel function in the original SVM problem. In our
work we have added an offset to the output of the
SVM’ed-Kernel to have all the patterns on the
positive side of the SVM’ed-Kernel decision
boundary.

In step E, we train our original SVM using our
SVM’ed-Kernel and the original training set. After
training the original SVM, the original SVM model is
ready for the real operation phase.

We conclude here that the original SVM classifier
component does not require the pattern to be
extracted to a feature vector on its own. It takes the
form:

1981

! +=
i
l bpatternipatternSVKyiipatternf),(..)(α

 (4.2)

where SVK is the SVM’ed-Kernel in the form:

')),,((..),('! +=
j

l bmjyxmkyjjpatternypatternxSVK α

(4.3)
Where,
 mj denotes a similarity feature vector of a support
vector pattern for the SVM’ed-Kernel.
),(yxm denotes the feature vector representing
similarity between patternx and patterny .

yjyi, denote the labels of the thi and thj patterns
respectively.
b , 'b denote constant offsets (or thresholds).
k denotes an arbitrary kernel function.
l 'l denote the number of training patterns in the
original and the recreated training sets respectively.
The parameters iα and jα are computed as the
solutions of quadratic programming problems.

Figure 5 shows a block diagram of the original
SVM classifier that makes use of the SVM’ed-Kernel
which in turn makes use of an arbitrary kernel.

uses

Fig.5 –A block diagram showing the original SVM classifier
that makes use of the SVM’ed-Kernel which in turn makes

use of an arbitrary kernel.

V. EXPERIMENTAL SETUP

We define the experimental setup of two
classification problems. In the first one we show that
the SVM’ed-Kernel is capable of using the already
existing feature definitions. In the second, we show its
ability to define features that could not have been
defined using the classical kernels.

The first classification problem is a hand drawn
circle-triangle classification problem. The input is a
hand drawn shape and the output is its classification as
a circle or a triangle. We assumed that the unseen

shape should be either a circle or a triangle. Figure 6
shows a hand-drawn circle.

Fig.6 –A hand-drawn circle.

The data set used was formed from the circles and

triangles patterns created by Refaat et al [13] after
increasing its size to be 222 circles and 222 triangles.
We divided the dataset set randomly into 400 patterns
for training and 44 patterns for testing. We compared
our SVM’ed-Kernel to different kernels with different
parameters. We used SVM Light [14] in our
simulations.

A number of features are extracted from each
shape for the purpose of serving as inputs to the
classifier. The features were selected to be size and
orientation independent [13]. The basic shape
features used are Ach , the area of the convex hull;
Pch , its perimeter; Aer the area of the rectangle
enclosing the convex hull of the shape and having the
minimum area; Alq , the area of the maximum area
inscribed quadrilateral that fits inside the convex hull
of the shape [15]; Alt , the area of the maximum area
inscribed triangle that fits inside the convex hull of
the shape [15]; Plt , its perimeter; Her , the height
of the rectangle enclosing the convex hull of the
shape and having the minimum area; and , Wer its
width.
 The features used for all kernels except the SVM’ed-
Kernel are

• AchPch /2 (Thinness ratio)
• AerAch /
• AerAlq /
• AchAlq /
• AlqAlt / .
• AchAlt /
• PchPlt /
• WerHer /

 The similarity feature vector definition that is
defined for the sake of the SVM’ed-Kernel was
defined simply to be the subtraction of the two
feature vectors of the two input patterns. In this
problem, we did not define new similarity features
that make use of the benefit of the SVM’ed- Kernel to
evaluate our kernel power of making use of the
already existing feature definition that was defined
for a single pattern.

In the second classification problem, we used the
Mushroom problem from the UCI Machine Learning
Repository. This data set includes descriptions of

1982

hypothetical samples corresponding to 23 species of
gilled mushrooms. Each species is identified as
definitely edible, definitely poisonous, or of unknown
edibility and not recommended. This latter class was
combined with the poisonous one.

The attributes available for each pattern were the
cap-shape, the cap-surface, the cap-color, the bruises,
the odor, the gill-attachment, the gill-spacing, the gill-
size, the gill-color, the stalk-shape, the stalk-root, the
stalk-surface-above-ring, the stalk-surface-below-ring,
the stalk-color-above-ring, the stalk-color-below-ring,
the veil-type, the veil-color, the ring-number, the ring-
type, the spore-print-color ,the population and the
habitat.

Each pattern is described by 22 characters; each of
them is describing an attribute. If we are going to
define a feature vector for each pattern, we will need
to encode such characters. Using the SVM’ed-Kernel,
we do not need to define a feature vector for each
pattern. We defined the similarity feature vector as a
binary vector of 22 features. Feature i takes the value
of one if attribute i is the same in the two input
patterns, otherwise it takes zero. This eliminated the
burden of encoding the character attributes using an
elegant definition of the similarity feature vector in a
binary simple form.

While creating the similarity feature vector, we
handle the missing attributes in the dataset by putting
the value of one if both attributes are missing. If only
one attribute is missing we put zero. We divided the
data set into 67 % for training and 33% for testing.

Interestingly, the recreated training set had more
than twenty million combinations, so we have
randomly sampled about 11% of this recreated
training set to train our SVM’ed-Kernel due to size
limitations in the SVM Light package.
 In both classification problems the SVM’ed-Kernel
uses internally the RBF kernel with the Gamma
parameter set to two. We note here that any kernel
could be used by the SVM’ed-Kernel.

VI. TESTING RESULTS

 For the hand drawn circle-triangle problem, we
used the SVM’ed-Kernel with just subtracting the two
feature vectors of the two input patterns. We also used
the polynomial kernel (Poly) with the d parameter set
to 2, 3 and 4; the RBF kernel with the gamma
parameter set to 1, 2, 0.1 and 0.01; and the linear
kernel. Table three shows the testing results of the
circle-triangle problem.

The SVM’ed-Kernel gives comparable testing
accuracy to all other kernels with respect to the test set
size and gives the least number of support vectors.
The SVM’ed-Kernel has only 6 support vectors
whereas all other kernels have at least 27 support
vectors. This shows that the SVM’ed-Kernel ability of
generalization outperforms all other classical kernels.
In addition, the SVM’ed-Kernel outperforms all other
kernels in the Joachim Xi alpha [16] estimate of the

recall and shows very promising Joachim Xi alpha of
the precision.

 We note here that we did not make use of
the benefit of defining features of similarity between
a pair of patterns but only showed that the SVM’ed-
Kernel is capable of using the original feature
definitions that were already defined to all problems
before.
In the Mushroom problem, Kim et al [17] reported
99.51 %, 96.61 %, and 99.53 % ten-fold cross
validation accuracies using different SVM variations
to avoid training with the whole dataset. In order to
make the problem harder; we divided the data set into
only 67 % for training and 33% for testing. After
generating the recreated training set, we chose 11%
of its patterns randomly to train our SVM’ed- Kernel.
The accuracy on the test set using our trained
SVM’ed-Kernel turned out to be 99.71 %. The
precision was 99.06 % while the recall was 98.49 %.
We showed here that the SVM’ed-Kernel was able to
generalize well even while training it with only 11%
of the recreated training set. In addition, we showed
that the SVM’ed-Kernel eliminated the burden of
encoding the character attributes using an elegant
definition of the similarity feature vector in a binary
simple form.

Table 3. Hand-drawn circle-triangle problem testing results

The
kernel
used

Accur-
acy on

the
test set

XiAlpha
estimate

of the
recall

XiAlpha
estimate

of the
precision

Num.
of

support
vectors

SVM’ed 97.73 99.5 99.5 6

Poly d=2 97.73 91.5 91.5 34

Poly d=3 97.73 90 90 40

Poly d=4 97.73 81 81 76

RBF g=1 100 97.5 100 68

RBF g=2 100 97 100 84

RBF g=.1 100 98.5 98.99 42

RBFg=.01 100 94.5 94.97 27

Linear 97.73 86 86 56

REFERENCES

[1]. B. Scholkopf and A. J. Smola. Learning with Kernels.
The MIT press, Massachusetts London, England 2002.

[2]. K. Thadani, A. Jayaraman, and V. Sundararajan.
Evolutionary Selection of Kernels in Support Vector
Machines. Proceedings of “The International
Conference on Advanced Computing and

1983

Communications (ADCOM’2006)”, 2006.
[3]. R. Kong and B. Zhang. Autocorrelation Kernel

Functions for Support Vector Machines. Proceedings of
“International Conference on Natural Computation
(ICNC’2007)”, 2007.

[4]. N. Ye, R. Sun, Y. Liu and L. Cao. Support Vector
Machines with Orthogonal Chebyshev Kernel.
Proceedings of ”The International Conference on
Pattern Recognition (ICPR’2006)”, 2006.

[5]. J. George and K. Rajeev. SINC-CAUCHY Hybrid
Wavelet Kernel for Support Vector Machines.
Proceedings of the Workshop “Machine Learning for
Signal Processing (MLSP’2008)”, 2008.

[6]. D. Wang, D. Yeung, and C. Eric. Weighted
Mahalanobis Distance Kernels for Support Vector
Machines. IEEE Transaction on Neural Networks
(2007).

[7]. S. Boughorbel, J. Tarel, and N. Boujemaa.
Conditionally Positive Definite Kernels for SVM Based
Image Recognition. Proceedings of ”IEEE International
Conference on Multimedia and Expo (ICME’2005)”,
2005, pp.113-116.

[8]. J. Xu, and X. Zhang. Kernels Based on Weighted
Levenshtein Distance. Proceedings of ”International
Joint Conference on Neural Networks (IJCNN’2004)”,
2004, pp.3015-3018.

[9]. X. Wu, J. Wang, K. Herbert. A New Kernel Method for
RNA Classification. Proceedings of ”International
Symposium on Bioinformatics and Bioengineering
(BIBE’2006)”, 2006, pp.201-208.

[10]. G. Siolas, and F. d’Alche-Buc. Support Vector
Machines Based on a Semantic Kernel for Text
Categorization. Proceedings of “International Joint
Conference on Neural Networks (IJCNN’2000)”, 2000,
pp.205-209.

[11]. C. Yan, Z. Wang, Q. Gao, and Y. Du. A Novel Kernel
for Sequences Classification. Proceedings of “IEEE
International Conference on Natural Language
Processing and Knowledge Engineering (NLP-
KE’2005)”, 2005, pp.769-773.

[12]. M. Cuturi, and J. Vert. A Mutual Information Kernel
for Sequences. Proceedings of “International Joint
Conference on Neural Networks (IJCNN’2004)”, 2004,
pp.1905-1910.

[13]. K. Refaat, W. Helmy, A. Ali, M. AbdelGhany, and A.
Atiya. A New Approach for Context-Independent
Handwritten Offline Diagram Recognition using
Support Vector Machines. Proceedings of
“International Joint Conference on Neural Networks
(IJCNN’2008)”, pp.177-182.

[14]. SVMlight is an implementation of Support Vector
Machines in C, by Thorsten Joachims.

[15]. J. E. Boyce, D. P. Dobkin, R. L. (Scot) Drysdale, and
L. J. Guibas. Finding External Polygons. Proceedings
of “Annual Symposium on the Theory of Computing
(STOC’1982)”, 1982.

[16]. J. Joachims. The maximum-margin approach to
learning text classifier: method, theory and algorithms,
Ph.D. Department of Computer Science, University of
Dortmund, 2000.

[17]. H. Kim and S. Park. Data Reduction in Support Vector
Machines by a Kernalized Ionic Interaction Model.
Proceedings of ”SIAM International Conference on
Data Mining (SDM’2004)”, 2004.

Khaled S. Refaat was born in
Cairo, Egypt on December 14,
1984. He received the BSc
degree in Computer Engineering
from Cairo University, Egypt in
2007. His graduation project
entitled “A new approach for
context independent handwritten
offline diagram recognition
using support vector machines”

has won the best computer engineering graduation project
in Egypt in the national competition (EED’2007). He was
awarded IEEE CIS 2008 Student Travel Grant for
IJCNN’08. From August 2007 to February 2009, he
worked as a Research Engineer in the Human Language
Technologies Group, IBM Cairo Technology Development
Center, Egypt. In IBM, he worked in several research
projects including event and relation extraction from
unstructured text, Arabic named entity normalization,
content filtering, and ontology learning. He is currently a
teaching assistant and a master student in Cairo University,
Egypt. His research interests include Machine Learning,
Computational Linguistics, Time Series Forecasting,
Machine Vision, and Support Vector Machines.

.

1984

