Hand-Drawn Shape Recognition Using the
SVM’ed Kernel

Khaled S. Refaat and Amir F. Atiya

Computer Department, Faculty of Engineering, Cairo University, Egypt
khaled.saeed84@gmail.com, amir@alumni.caltech.edu

Abstract. We describe an application of the novel Support Vector Ma-
chined Kernel (SVM’ed Kernel) to the Recognition of hand-drawn
shapes. The SVM’ed kernel function is itself a support vector machine
classifier that is learned statistically from data using an automatically
generated training set. We show that the new kernel manages to change
the classical methodology of defining a feature vector for each pattern.
One will only need to define features representing the similarity between
two patterns allowing many details to be captured in a concise way. In
addition, we illustrate that features describing a single pattern could also
be used in this new framework. In this paper we show how the SVM’ed
Kernel is defined and trained for the multiclass shape recognition prob-
lem. Simulation results show that the SVM’ed Kernel outperforms all
other classical kernels and is more robust to hard test sets.

Keywords: Shape recognition, Support Vector Machine, Kernel,
Similarity.

1 Introduction

Structured diagrams are very prevalent in many document types. Most peo-
ple who need to create such diagrams use structured graphics editors such as
Microsoft Visio [I6]. Structured graphics editors are extremely powerful and ex-
pressive but they can be cumbersome to use [I7]. It was shown through extensive
timing experiments that structured diagrams drawn by hand takes only about
10% of the time it takes to draw one using a tool like Visio [10]. This indicates
the value of automated recognition of hand-drawn diagrams.

One of the main steps in the problem of diagram understanding is the recogni-
tion of individual hand-drawn shapes. The input to the shape recognition system
is a geometric hand-drawn shape. Whereas, the output is its classification to one
of predefined classes.

In the classical classification framework, shapes are first converted to feature
vectors which are then used to train the classifier. At the point of replacing the
shape by a feature vector representing it, a significant amount of information is
lost. This could be easily noticed when we discover that we could not recover
the shape pattern once converted to a feature vector.

In other problems, sometimes representing the pattern by a feature vector
could be problematic. For example if we would like to represent a document by

C. Alippi et al. (Eds.): ICANN 2009, Part 11, LNCS 5769, pp. 275-p84] 2009.
© Springer-Verlag Berlin Heidelberg 2009

276 K.S. Refaat and A.F. Atiya

a feature vector, we could use a dictionary to create a feature vector of word.
This could lead to a huge number of features. An alternative and seemingly
more efficient way is to define a feature vector that represents the similarity
between a pair of documents. In such case we could just define a vector that
consists of a few simple and effective high level features. This similarity vector
could, for example, consist of the number of common stemmed words between
the pair of documents, the number of common named entities, the number of
common semantic relations, and finally a binary feature showing whether the
two documents were extracted from the same source or not. This suggests that
a significant achievement could be acquired, if we could change the classification
framework to using feature vectors that represent the similarity between a pair
of patterns rather than using feature vectors that represent single patterns.

SVM is a suitable classifier for applying this new framework. In SVM, the
classical kernels take two feature vectors as input (each feature vector represents
a pattern) and return a real number representing the similarity between them
[1]. In order to make use of high level similarity features as stated previously, a
domain expert is required to invent a user defined kernel which is an algorithm
that measures the similarity between two patterns without converting them to
feature vectors. The domain expert is required in order to determine the contri-
bution of each component similarity feature to the final similarity measure. This
is a time consuming task since it has to be done for each problem. Moreover,
a hard quantitative approach would lead to more consistent performance, and
allows the use of cutting edge optimization methods.

We propose a novel kernel function that is extracted from data through a
statistical learning procedure. The input of this new kernel function will be only
one feature vector representing the similarity between the two input patterns.
We name our new proposed kernel the SVM’ed-Kernel.

We propose a method to automatically generate a recreated training set from
the original training set. The recreated training set is then used to learn the
SVM’ed-Kernel. Interestingly, the SVM’ed-Kernel will be learned as a separate
SVM classification problem. Once trained, the SVM’ed-Kernel will then be used
as a kernel function in the original classification SVM problem.

Using the SVM’ed-Kernel, we do not need to define features to represent a
single pattern. We will only need to define features that represent the similarity
between a pair of patterns. This allows novel features to be defined that could
not have been defined using the classical feature definition framework.

Moreover, a simple similarity feature between a pair of patterns could elimi-
nate a large number of features representing a single pattern as it was shown in
the example of representing a document by a feature vector. This contributes to
dimensionality reduction.

In the SVM’ed-Kernel, the contribution of each similarity feature to the final
similarity measure is learned statistically from the recreated training set. This
eliminates the need for a domain expert, allows the definition of novel high level
similarity features, and leads to optimizing the contributions of the different
similarities.

Hand-Drawn Shape Recognition Using the SVM’ed Kernel 277

In this paper, we describe the application of the SVM’ed Kernel to the Recog-
nition of hand-drawn shapes. The SVM’ed Kernel will allow adding a chain code
similarity feature representing the similarity between a pair of patterns that will
boost the accuracy significantly.

This paper is organized as follows: Section 2 describes the related work. In
Section 3 we introduce preliminaries of SVM as a classifier. The SVM’ed Kernel
will be presented in Section 4. Section 5 describes the shape recognition problem.
Finally we introduce the experimental results in section 6. The paper ends with
a conclusion and future work in section 7.

2 Related Work

Many kernels have been proposed in the SVM literature. We divide the related
work into general kernels and specific user-defined kernels. The general kernels
are not defined for a specific problem. On the other hand, the user defined kernels
are domain dependent and they are defined specifically for the problem at hand.

From among the general proposed kernels, Thadani et al [2] creates a kernel
function suitable for the training data using a genetic algorithm mechanism.
They showed that their genetic kernel has good generalization abilities when
compared with the polynomial and the radial basis kernel functions. Kong et al
[3] proposed the autocorrelation kernel by borrowing this concept from signal
processing. The autocorrelation functions give comparable results to the RBF
kernel when used to classify some UCI datasets. George et al [4] proposed a
Sinc-Cauchy hybrid wavelet kernel and shows that it is admissible which means
that it is positive definite [I]. They used it for the classification of Cardiac Sin-
gle Photon Emission Computed Tomography images and Cardiac Arrhythmia
signals. Their experimental results showed that promising generalization can be
achieved with the hybrid kernel compared to conventional kernels. Wang et al
[5] proposed the Weighted Mahalanobis Distance Kernels. They first find the
data structure for each class in the input space via agglomerative hierarchical
clustering and then construct the weighted Mahalanobis distance kernels which
are affected by the size of clusters they reside in. They showed that, although
WDM kernels are not guaranteed to be positive definite or conditionally positive
definite, satisfactorily classification results can still be achieved because regular-
izes in SVMs with WDM kernels are empirically positive in pseudo-Euclidean
spaces.

From among the specific user-defined kernels, XU et al [6] proposed using the
weighted Levenshtein distance as a kernel function for strings. They used the UCI
splice site recognition dataset for testing their proposed specific kernel which got
the best results in this problem. Wu et al [7] proposed a new user-defined ker-
nel for RNA classification. They showed that the new kernel takes advantage of
both global and local structural information in RNAs. Their experimental results
showed that the new kernel outperforms existing kernels when used to classify
non-coding RNA sequences. Yan et al [§] proposed the position weight subse-
quences kernel (PWSK) that could be used for identifying gene sequences. This

278 K.S. Refaat and A.F. Atiya

kernel was used for splice site identification and the performance was better than
that of the string subsequences kernel (SSK). Cuturi et al [9] proposed a mutual
information kernel for strings which borrows techniques from information the-
ory and data compression. They showed that their kernel reported encouraging
classification results on a standard protein homology detection experiment.

Our proposed kernel falls in the general kernels class while having the ability
of defining similarity features which have been only used in specific user defined
kernels. Moreover, it does not need a domain expert to determine the contri-
bution of each similarity feature to the similarity measure since the kernel is
learned statistically from data.

For the problem of shape recognition, Valveny and Marti discussed a method
for recognizing hand-drawn architectural symbols [13] using deformable template
matching. They achieved recognition rates around 85%, but did not discuss
how the user might correct an incorrect recognition. Notowidigo and Miller [14]
presented a novel approach to creating structured diagrams. There system aims
to provide drawing freedom by allowing the user to sketch entirely off-line using
a pure pen-and paper interface. The system can infer multiple interpretations for
a given sketch to aid during the user’s polishing stage. The UDSI program uses a
novel recognition architecture that combines low-level recognizers with domain-
specific heuristic filters and a greedy algorithm that eliminates incompatible
interpretations. Refaat et al (2008) [10] has proposed a new approach for context-
independent hand-written diagram recognition using support vector machines
achieving an acceptable segmentation accuracy and approaching 90% recognition
accuracy.

3 Preliminaries

The basic idea of SVM classifiers is to map a given data set from input space into
higher dimensional feature space , called dot product space, via a map function
¢ , where

¢: RN — F (1)

Then, it performs a linear classification in the higher dimensional space . This
requires the evaluation of dot products:

k(z,y) = (¢(x), ¢(y)) (2)

Where k is called the kernel function. If F' is high dimensional, the right hand
side of equation () will be very expensive to compute [I]. Therefore, ker-
nel functions are used to compute the dot product in the feature space using
the input parameters which means that the mapping to is done implicitly. A
kernel function returns a real number representing the similarity of its two input
patterns. There are many types of kernels such as the RBF kernel, given by:

k(l‘,xl) = 67‘|$*$i|‘2/202 (3)

Other similar kernels are also widely used.

Hand-Drawn Shape Recognition Using the SVM’ed Kernel 279

The function used for the assignment of new objects to one of the two classes
is called the decision function which takes the form:

fla) = {“ if 30y cayik(@, @) +b > 0, "

—1 if otherwise.

Where, [denotes the number of training patterns

x denotes the unseen pattern vector

x; denotes training pattern vector

y; denotes the label of the training pattern

b denotes constant offset (or threshold)

1 and — 1 are the labels of the decision classes

The parameters «;’s are computed as the solution of a quadratic programming
problem.

4 The SVM’ed Kernel

The SVM’ed-Kernel could be used in any machine learning task that requires a
kernel function. In this paper we illustrate its use as a kernel function for support
vector machine classification problems.

Internally, the SVM’ed-Kernel is constructed as a support vector machine
classification problem. Therefore we have two SVMs; the first one is the original
SVM classification problem which we will call it the original SVM, while the
other is the one used as a kernel function which we call it the SVM’ed-Kernel.

This SVM’ed-Kernel will be trained using a recreated training set extracted
from the original one. The steps to create and use the SVM’ed-Kernel are: A.
Define a feature vector representing the similarity between a pair of patterns,
B. Automatically generate the recreated training set from the original one. C.
Train the SVM’ed-Kernel as a normal classification problem using the recreated
training set in B. D. Use the trained SVM’ed-kernel as a kernel function in the
original SVM problem. E. Train the original SVM using the SVM’ed-Kernel.

We now explain each step in details. In step A, we define a feature vector that
represents the similarity between two patterns. For example in a text catego-
rization classification problem where we need to classify a document according
to whether it is related to either sport or politics. One could define a similarity
feature vector of two features. The first feature could be the number of common
words after stemming, while the second one could be the number of common
semantic relations.

In step B, assume that we have an original simple training set similar to that
in Table 1. To create the recreated training set that will be used to train the
SVM’ed-Kernel, we select every pair of patterns from the original training set
(order is not important). So we have pattern 1 and pattern 2, pattern 1 and
pattern3, pattern 2 and pattern 3, pattern 2 and pattern 4, and so on. We label
each pair as being matching (1) if the two patterns have the same label in the
original training set or not matching (-1) if they have different labels. Table 2

280 K.S. Refaat and A.F. Atiya

Table 1. The original training set

patterns class label 1 or -1

pattern 1 1
pattern 2 -1
pattern 3 1
pattern 4 -1

Table 2. The recreated training set

patterns class label 1 or -1
pattern 1 and pattern 2 -1
pattern 1 and pattern 3 1
pattern 1 and pattern 4 -1
pattern 2 and pattern 3 -1
pattern 2 and pattern 4 1
pattern 3 and pattern 4 -1

illustrates the recreated training set. One can see here that the recreated training
set is of larger size than the original training set.

In step C, we first convert each pair in the recreated training set, created in
step B, to a feature vector using the similarity feature vector definition we have
defined in step A. After that, we train the SVM’ed-Kernel as a normal SVM
classification problem using the recreated training set and any arbitrary kernel.
The output of this SVM classifier will be a label indicating whether the two
input patterns are matching or not. After training, we save the SVM trained as
our SVM’ed-Kernel after removing the decision component from the function in
equation (@), to be in the form

!
f(z) = Zaiyik(%ii) +b (5)
i—1

The decision component was removed because we are interested in the real value
returned from (), which represents how confident we are in the match. A larger
returned value represents a better match (high similarity) and vice versa. Figure
1 shows three pairs, from the recreated training set, and their locations from the
decision boundary of the SVM’ed-Kernel. When substituting in equation (&),
pair one’s similarity feature vector will return a positive number indicating high
similarity between this pair. On the other hand, pair two’s similarity feature
vector will return a smaller positive number indicating that this pair is less
similar than pair one. Finally, pair three’s vector will return a negative number
indicating low similarity between this pair.

The training patterns in the recreated training set were used to determine the
maximal margin classifier. The distance of a new pair from the maximal margin
classifier decision boundary is a direct measure of the similarity between the two

Hand-Drawn Shape Recognition Using the SVM’ed Kernel 281

Fig. 1. Three pairs and their locations from the decision boundary of the SVM’ed-
Kernel

patterns of this pair due to the way we formed the recreated training set in B
and the definition of the similarity feature vector in A.

In step D, we use our trained SVM in C as our kernel function in the original
SVM problem. In our work we have added an offset to the output of the SVM’ed-
Kernel so that the similarity measure returned becomes always positive.

In step F, we train our original SVM using our SVM’ed-Kernel and the orig-
inal training set. After training the original SVM, the original SVM model is
ready for the real operation phase. We conclude here that the original SVM
classifier component does not require the pattern to be extracted to a feature
vector on its own. It takes the form:

1
f(pattern) = Z 0,;y; SV K (pattern, pattern;) + b (6)
i=1

where SV K is the SVM’ed-Kernel in the form:
l ’
SV K (pattern,, pattern,) = Z a;yik(m(z,y),m;) + v (7)
j=1

Where, m; denotes a similarity feature vector of a support vector pattern for
the SVM’ed-Kernel.

m(z,y) denotes the feature vector representing similarity between pattern, and
pattern,.

y; denotes the label of the i*" pattern in the original training set.

y; denotes the label of the 4t pair in the recreated training set.

b and b’ denote constant offsets (or thresholds).

k denotes an arbitrary kernel function.

[and I’ denote the number of training patterns in the original and the recreated
training sets respectively.

The parameters «;’s and «;'s are computed as the solutions of quadratic pro-
gramming problems.

282 K.S. Refaat and A.F. Atiya

5 Shape Recognition

In our previous work [I0], a number of basic features were extracted from each
shape for the purpose of serving as inputs to the classifier. The features were
selected to be size and orientation independent. The basic shape features used are
Ach, the area of the convex hull; Pch, its perimeter; Aer, the area of the rectangle
enclosing the convex hull of the shape and having the minimum area;Alq, the
area of the maximum area inscribed quadrilateral that fits inside the convex hull
of the shape [12];Alt, the area of the maximum area inscribed triangle that fits
inside the convex hull of the shape [12];Plt, its perimeter;Her, the height of the
rectangle enclosing the convex hull of the shape and having the minimum area;
and Wer, its width.

The features used in the SVM model were: Pch?/Ach, Ach/Aer, Alq/Aer,
Alq/Ach, Alt/Alq, Alt/Ach, Plt/Pch,and Her/Wer. For the SVM’ed Kernel, we
decided to make use of the features already designed before together while adding
a novel high level similarity feature to show the power of the novel proposed
kernel.

The similarity feature vector definition that is defined for the sake of the
SVM’ed-Kernel was defined simply to be the subtraction of the two original
feature vectors of the two input patterns. However, we have added a single
similarity feature that represents the similarity between a pair of patterns. This
feature was a modified chain code distance measure [15].

6 Testing Results

In our experiments, we trained the system using hand-drawn circles, triangles,
rectangles, diamonds and ellipses from Refaat et al data set (2008) [10], we
have added some new shapes to the set to increase its size. We divided the new
extended data set into 750 patterns for training and we kept two test sets unseen.
The first test set is a normal one of 236 patterns while the other one consists of
234 hard patterns. In the hard test set the shapes may be drawn similar to more
than one shape class and it is the responsibility of the model to discover its true
class. The hard test set was created in order to measure our models’ robustness to
hard patterns or shapes drawn carelessly. We used the SVM’ed Kernel with the
pairwise classification method [I] to handle the multiclass problem. A recreated
set was generated from the training set of each pair of classes. Each recreated
set was then used to train an SVM’ed Kernel which was used subsequently as
a kernel function for the corresponding binary classifier. All SVM’ed Kernels
use the rbf kernel with the gamma parameter set to 2. We did not perform any
tuning for the gamma of the rbf kernel used by the SVM’ed Kernels.

We compared the test accuracy of the SVM’ed Kernel to that achieved by
Refaat et al (2008) SVM model and also to that achieved by using the rbf kernel
with the pairwise classification method. In the last case, by trial and error, the
gamma parameter was chosen to be set to 2. We used SVMlight [I1] in all our
simulations. Table 3 shows the testing accuracies of the three models for both
the normal and the hard sets.

Hand-Drawn Shape Recognition Using the SVM’ed Kernel 283
Table 3. Testing Accuracies

Test Set-Model RBF gamma = 2 pairwise Refaat 2008 SVM’ed Kernel pairwise
normal 81.355% 88.135% 92.796%
hard 61.96% 69.23% 85.89%

The testing results showed that the SVM’ed kernel outperforms Refaat et al
2008 in both the normal and the hard sets by about 4.6% and 16.5% respectively.
The reason of this significant gain was that the SVM’ed kernel used the modified
chain code similarity measure. This mutual feature could not have been used by
the classical kernels because it represents a pair of patterns rather than only one.
In addition, the SVM’ed kernel did not neglect the predefined classical features
which made it act as a statistical integrator of all information about the task of
shape recognition.

7 Conclusion and Future Work

In this paper, we proposed the application of the SVM’ed-Kernel function to
the problem of shape recognition. We showed how the SVM’ed Kernel allows
defining features of similarity between a pair of patterns. In addition, we showed
that the old feature definitions for single patterns could also be used by just
subtracting each two corresponding features. In the shape recognition problem,
the enhancement was about 4.5 % in the normal test set and interestingly about
16.5% in the hard test set. In our future work, we are going to use the SVM’ed-
Kernel in various real world applications in both Natural Language Processing
and Bioinformatics.

References

1. Scholkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge
(2002)

2. Thadani, K., Jayaraman, A., Sundararajan, V.: Evolutionary Selection of Kernels
in Support Vector Machines. In: International Conference on Advanced Computing
and Communication (2006)

3. Kong, R., Zhang, B.: Autocorrelation Kernel Functions for Support Vector Ma-
chines. In: Third International Conference on Natural Computation (2007)

4. George, J., Rajeev, K.: SINC-CAUCHY Hybrid Wavelet Kernel for Support Vector
Machines. In: IEEE Workshop on Machine Learning for Signal Processing. IEEE
Press, Los Alamitos (2008)

5. Wang, D., Yeung, D., Eric, C.: Weighted Mahalanobis Distance Kernels for Support
Vector Machines. IEEE Transaction on Neural Networks 18, 1453-1462 (2007)

6. Xu, J., Zhang, X.: Kernels Based on Weighted Levenshtein Distance. In: Interna-
tional Joint Conference on Neural Networks, pp. 3015-3018. IEEE Press, Budapest
(2004)

284

7.

10.

11.
12.

13.

14.

15.

16.

17.

K.S. Refaat and A.F. Atiya

Wu, X., Wang, J., Herbet, K.: A New Kernel Method for RNA Classification.
In: Sixth IEEE International Symposium on Biolnformatics and BioEngineering,
Virginia, pp. 201-208 (2006)

Yan, C., Wang, Z., Gao, Q., Du, Y.: A Novel Kernel for Sequences Classification. In:
IEEE International Conference on Natural Language Processing and Knowledge
Engineering, Wuhan, pp. 769-773 (2005)

Cuturi, M., Vert, J.: A Mutual Information Kernel for Sequences. In: International
Joint Conference on Neural Networks, pp. 1905-1910. IEEE Press, Budapest (2004)
Refaat, K., Helmy, W., Ali, A., Abdelghany, M., Atiya, A.: A New Approach
for Context-Independent Handwritten Offline Diagram Recognition using Sup-
port Vector Machines. In: International Joint Conference on Neural Networks,
pp. 177-182. IEEE Press, Hong Kong (2008)

Jaochims, T.: SVMlight is an implementation of Support Vector Machines in C
Boyce, J., Dobkin, D., Drysdale, R., Guibas, L.: Finding External Polygons. In:
Annual Symposium on the Theory of Computing (1982)

Valveny, E., Marti, E.: Deformable template matching within a bayesian framework
for hand-written graphic symbol recognition. In: Chhabra, A.K., Dori, D. (eds.)
GREC 1999. LNCS, vol. 1941, pp. 193-208. Springer, Heidelberg (2000)
Notowidigo, M., Miller, C.: Offline sketch interpretation. In: AAAT Fall Symposium
on Making Pen-Based Interaction Intelligent and Natural. Washington (2004)
Ahmad, M.B., Park, J.-A., Chang, M.H., Shim, Y.-S., Choi, T.-S.: Shape registra-
tion based on modified chain codes. In: Zhou, X., Xu, M., Jéhnichen, S., Cao, J.
(eds.) APPT 2003. LNCS, vol. 2834, pp. 600-607. Springer, Heidelberg (2003)
Microsoft software product for creating a wide variety of business and technical
drawings, http://www.office.microsoft.com

Notowidigdo, M.: User-Directed Sketch Interpretation. MEng thesis, Massachusetts
Institute of Technology (2004)

http://www.office.microsoft.com

	Hand-Drawn Shape Recognition Using the SVM'ed Kernel
	Introduction
	Related Work
	Preliminaries
	The SVM'ed Kernel
	Shape Recognition
	Testing Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

