
Efficient Stochastic Analysis of Real-Time Systems via Random Sampling

Khaled S. Refaat, Pierre-Emmanuel Hladik
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France

Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France
Toulouse, France

{krefaat, pehladik}@laas.fr

Abstract—This paper provides a stochastic approach to the
analysis of real-time systems under preemptive priority-driven
scheduling. The main idea is to simplify the execution time
distributions via random sampling to decrease complexity. This
beneficial effect is counterbalanced by an increase in pessimism.
However, the proposed analysis is significantly less pessimistic
than the classical worst-case deterministic analysis. In addition,
it could be tuned according to the memory and time availability.
Thus, the proposed method provides, for the first time, a
relation between pessimism and computational resources. The
testing results show the effectiveness of the sampling approach
in terms of practicality and optimism.

Keywords-stochastic analysis; efficient; random sampling;
real time systems; pessimism

I. INTRODUCTION

A real-time system is a system that should satisfy some
temporal constraints in order to work correctly. In soft
real-time systems, the completion of an operation after its
deadline decreases the quality of service, e.g. dropping
frames when displaying a video. Therefore, a soft real-time
system should be designed to finish its operation as fast as
possible in order to provide an acceptable quality of service.

On the other hand, in a hard real-time system, the
completion of an operation after its deadline is considered
unacceptable and might lead to a catastrophic failure of
the complete system. Furthermore, in some hard real-time
systems, failing to meet a temporal constraint could result in
life threatening situations. For example, an antilock braking
system must detect and respond to loss of traction within
a few milliseconds; a delay of one or two seconds would
be intolerable and potentially deadly [1]. Therefore, these
critical systems should be designed in a way that provides
some guarantees.

Prediction of whether a task will satisfy a temporal
constraint or not is necessary to design a useful real-
time system. To conduct schedulability analysis of real-time
systems, some assumptions are usually made. For example,
classical approaches consider the worst-case execution time
to characterize the execution time of a task. This assumption
has been made in utilization factor analysis [2], [3] and
response time analysis [4]. Although the computational
cost under this assumption is small, the analysis is very

pessimistic. Such worst-case execution time value is not
frequently encountered during real execution and therefore
basing the analysis on it leads to extremely pessimistic
results giving rise to oversized real-time systems [5].

In order to tackle the problem of pessimism, it is possible
to model the execution time of a task as a discrete random
variable whose distribution could be obtained by hybrid
techniques [6] or by measurements.

The problem is that the exact stochastic analysis of most
real-time systems under preemptive priority driven schedul-
ing is unaffordable in current practice [5]. To overcome this
problem, some approaches perform stochastic analysis with
a special scheduling model that isolates tasks so that each
one could be analyzed independently [7], [8].

Moreover, some approaches introduce worst-case assump-
tions to simplify the stochastic analysis. Monolache et al
proposed restricting preemption [9], whereas others intro-
duced the critical instant assumption[10], [11], [12].

In [13], Dı́az et al described a stochastic analysis method
for general periodic real-time systems. The proposed method
accurately computes the response time distribution of each
task in the system, thus making it possible to determine the
probability of missing the deadline for individual tasks. This
method is not dedicated for a specific scheduling method,
and can be used with both static and dynamic priority
scheduling. However, this approach is intractable for large
systems [13].

In such exact analysis, each task has an execution time
distribution. Such distributions usually have a large number
of execution time values. During the analysis, iterative
procedures of convolution and other stochastic functions
produce a huge number of values in computed backlog
and response time distributions which makes the analysis
impractical in terms of memory demand [5].

In [14], [5], Dı́az et al extended their previous study
by formalizing the concept of pessimism in the stochastic
analysis. They showed how to compare between several
distributions to produce a pessimistic analysis. Such intro-
duction opened the door for safe approximations.

However, it is worth mentioning that any approximate
analysis opens a new source of troublesome complexity.
First, any approximate analysis should not be more opti-

!!nnnddd EEEuuurrrooommmiiicccrrrooo CCCooonnnfffeeerrreeennnccceee ooonnn RRReeeaaalll---TTTiiimmmeee SSSyyysssttteeemmmsss

!000666888---333000777000///!000 $$$222666...000000 ©©© 222000!000 IIIEEEEEEEEE

DDDOOOIII !000...!!000999///EEECCCRRRTTTSSS...222000!000...222999

!777555

mistic than the exact analysis. In other words, the probability
of missing the deadline computed from the approximate
analysis should not be smaller than that computed from
the exact one. Moreover, the pessimism resulting from the
approximation should not be excessive so that the analysis
could be useful. Furthermore, the time and memory demand
of such approximate analysis should fit the embedded system
or the used machine.

This paper uses the formal definition of pessimism. We
propose a method for efficient stochastic analysis by sim-
plifying the exact distributions through random sampling.
Subsequently, the stochastic analysis is completed using the
new pessimistic distributions.

During the sampling process, each distribution is replaced
with another more pessimistic one through random sam-
pling. The pessimism of the new distributions and therefore
the safety are ensured by assigning the unsampled probabil-
ity mass to the worst-case execution time. We show that
the proposed analysis is safe according to the definition
proposed in [5].

In addition to this, we show that the most efficient way
to perform the sampling is to finish it before the analysis as
opposed to the interleaving process of sampling and analysis.

Moreover, we propose a modification to our novel sam-
pling analysis that has even decreased the pessimism of
the approach with the same memory demand. However,
such modification degrades the time efficiency and therefore
should only be used if such degradation could be tolerated.

Simulations show how the proposed method provides, for
the first time, a relation between pessimism and efficiency.
Thus, it provides system designers with a capability to
design their system according to their available resources.

While the previous methods suffer from either extreme
pessimism or impracticability, our approach provides a
relation between pessimism and computational resources.
Actually, the amount of time and memory needed to com-
plete the analysis are directly proportional to the number
of samples used. In addition, the pessimism is inversely
proportional to the number of samples. In fact, when all
the distributions’ values are sampled, the analysis becomes
exact. The main gain of the sampling approach is that the
number of samples could be increased according to the time
and memory available for the analysis.

The paper is organized as follows. In section II, the system
model is assumed and the notations used throughout the
paper are given. Section III describes the stochastic analysis
method, whereas in section IV, we propose the new efficient
analysis via random sampling. We discuss the reason for
sampling before analyzing in section IV-E. In Section V,
the experimental results of our proposed analysis method
are shown. Finally, in Section VI, we conclude.

II. SYSTEM MODEL AND NOTATIONS

The system consists of n independent periodic tasks
{τ1, ..., τi, ..., τn}. A task τi is characterized by a set of
parameters 〈Ti,Φi, ei,Di,Mi〉. These parameters are the
period, Ti, the initial phase, Φi, the execution time, ei, the
deadline or the temporal constraint, Di, and the maximum
allowed probability of missing the deadline, Mi.

The execution time, ei, is a discrete random variable of a
known distribution. The probability function (PF) is denoted
by fei(·), where fei(e) = P{ei = e}.

Each periodic task results in an infinite number of jobs.
Γi,j denotes the jth job of the task τi. Each job Γi,j is
released at a deterministic time, λi,j . The job release time,
λi,j , is computed via the formula [5]:

λi,j = φi + (j − 1)Ti (1)

The response time of a job Γi,j is a discrete random
variable denoted by Ri,j , whereas the response time of a
task, denoted by Ri, is computed as the average of the
response times of its jobs:

fRi(r)
def [13]

=
1

mi

mi∑

j=1

fRi,j (r) (2)

where mi = T/Ti, which is the number of jobs from τi

released in a hyper-period of length T .
A task τi is said to be schedulable if P{Ri > Di} ≤ Mi.

III. SUMMARY OF PREVIOUS STOCHASTIC ANALYSIS

Our approach is based on the stochastic analysis proposed
by [13], [14], [5]. This Section summarizes this method. In
order to have a thorough presentation, the reader can refer
to [5].

For the sake of simplicity, the task to which a job belongs
is not tracked, thus a job has a single index, for instance,
Γj . The index of a job refers to its order in the infinite
sequence of jobs, i.e. Γk is released before Γk+1, that is
∀k,λk ≤ λk+1. The response time of a job Γj is computed
as follows:

Rj = W (λj) + ej + Jj (3)

where:
• Rj denotes the response time distribution of an arbi-

trary job Γj ,
• W (λj) denotes the backlog at time λj , i.e. the sum of

the remaining execution times of all the jobs that did
not finish up to time λj while having higher priorities
than the job under analysis.

• Jj denotes the interference of all higher priority jobs
released after job Γj .

The backlog at the release time of any job Γj , denoted
by W (λj), can be computed using the following iterative
procedure [5]:

W (λk0) = 0 (4)

!777666

W (λk) = shrink(W (λk−1) + ek−1,λk − λk−1) (5)

Where λk0 denotes the release time of the first job
released before Γj and has a higher priority. The shrink
function is given by:

fshrink(W,∆)(x) =

0 if x < 0,
∑0

z=−∞ fW (z + ∆) if x = 0,
fW (x + ∆) if x > 0.

(6)

Iterations start with a zero backlog as in equation (4) and
iterates on all higher priority jobs released before Γj .

After computing the backlog at the release time of Γj , the
backlog distribution is convolved with the execution time
distribution. Such convolution results in a partial response
time which is valid only if no interference with subsequent
higher priority jobs takes place. In case of the existence
of higher priority jobs released after λj , this partial re-
sponse time will be valid only from λj to λj+1. A validity
range is indicated as a super index for the response time:
R[0,λj+1−λj] which is computed as follows:

R[0,λj+1−λj] = W (λj) + ej (7)

In order to increase the range of validity, the following
equation is used [5]:

R[0,λk+1−λj] = AF (R[0,λk−λj],λk − λj , ek), k > j (8)

where the job Γk has a higher priority than Γj , and AF is
a stochastic function given by:

fAF (R,∆,e)(x) =

{
fR(x) if x ≤ ∆
∑∞

i=∆+1 fR(i).fe(x − i) if x > ∆
(9)

Each iteration using equation (8) increases the interval
of validity of the partial response time. The iterating is
stopped when the deadline is included in the validity range.
Consequently, the probability of missing the deadline for a
certain job could be computed by summing the probabilities
of the response time values lying before the deadline and
subtracting this sum from one:

P (Rj > Dj) = 1 −
k=Dj∑

k=0

P (R[0,∆]
j = k) (10)

After completing the analysis, the probability of missing
the deadline of a certain task is computed by averaging the
probabilities of missing the deadlines of all its jobs, see
Eq. (2).

IV. SAMPLING ANALYSIS

A. Motivation

The exact stochastic analysis [13], [14], [5] has overcome
the problem of pessimism that was introduced in the worst-
case analysis. However, the computational requirements
have rendered such exact approaches impractical except for
simple scenarios [5].

In such exact stochastic analysis, during each iteration
of the backlog computation, two random variables are con-
volved in equation (5) which results in a new random vari-
able. Assuming that the numbers of values of the convolved
distributions are n and m respectively, the number of values
of the resultant distribution consists of more values than any
of the convolved distributions. Moreover, it could reach nm
in the worst-case. This could easily lead to a memory burst
after several iterations.

To overcome this problem, we propose simplifying the
execution time distributions before starting the analysis. We
claim that such simplification will necessarily render the
analysis practical while being far away from the extreme
pessimism of the worst-case analysis. However, such ap-
proximation should be done carefully to ensure the safety
of the analysis.

B. Introduction to sampling

In statistics, sampling is the process of selecting individual
units or samples intended to yield some knowledge about a
population of concern [15].

Probability sampling is the process of sampling while
taking in consideration the probability of occurrence of each
unit. In other words, a unit that has a high probability of
occurrence will have a higher chance to be sampled than
a unit with a lower probability of occurrence. Probability
sampling is usually used when the probability of occurrence
can be accurately determined [15].

As a special case, simple random sampling is a sampling
design in which a distinct units are selected from the A
units in the population in such a way that every possible
combination of a units is equally likely to be the sample
selected. In simple random sampling, the probability that the
ith unit of the population is included in the sample is πi =
a/A, so that the inclusion probability is the same for each
unit. Other sampling methods include systematic sampling
and stratified sampling [15].

To illustrate the benefit of sampling, consider the follow-
ing real world example. In order to estimate the average
weight of hens in the country, a sample hen can be taken
from each farm to measure its weight. To do such sampling,
a random number generated from a uniform distribution
between 0 and 1 can be allocated to each hen, and the
hen with the highest number in each farm is selected.
Subsequently, each representative hen weight is multiplied
by the number of hens in its farm. Finally, all such products

!777777

(a) (b)

fe(x) fe(x)

Figure 1. An exact execution time distribution and two samples from it

are summed and such sum is divided by the total number
of hens in the country to get the estimated average. In this
case, the sampled hen was used to represent all the hen
population in its farm and that has essentially saved the
time for weighing each hen in the nation which would be
problematic.

C. The proposed sampling approach

In the exact stochastic analysis approach, each execution
time of a task is represented by a probability distribution.
We propose simplifying each execution time distribution by
selecting k samples from the N values of the distribution
using the probability sampling method. These new distribu-
tions are used to perform the stochastic analysis as it was
shown in section III.

However, the new analysis must not be more optimistic
than the exact one. An optimistic analysis might lead to
an inconsistent verification process. An unschedulable task
could be erroneously declared schedulable by an optimistic
analysis. Therefore, we have to ensure that our new analysis
is not more optimistic than the exact one.

Figure 1 shows an execution time distribution (Fig. 1(a))
and its simplified version (Fig. 1(b)) with k = 2, generated
by random sampling, respectively. It is clear that the samples
shown in figure 1(b) do not form a complete distribution that
sums to one.

The distribution resulting from sampling is completed by
assigning the rest of the probability mass to the worst-case
execution time as shown in figure 2. It is important to prove
that the analysis using the new distribution will be safe.

Each simplified distribution e′j extracted from the original
distribution of ej takes the following mathematical form:

fe′
j
(x) =

k∑

i=1

fej (xi)δ(x−xi)+(1−
k∑

i=1

fej (xi))δ(x−xw)

(11)
where xi is the execution time value of the ith sample,
xw is the worst-case execution time value in the original
distribution, fej is the original execution time probability

fe'(x)

Figure 2. The final simplified distribution after compensating the proba-
bility deficit

distribution function, and δ is a function defined by:

δ(x) =

{
1 if x = 0
0 if x &= 0

(12)

The first term in equation (11) represents the contribution
of the k samples, whereas the second term is added to ensure
pessimism by assigning the rest of the probability mass to
the worst-case execution time.

1) Proof of safety: Diaz et al [5] have defined the
”greater than” relation between two distributions (see Def-
inition 1 in [5]). The definition is hereby summarized as
follows: for two random variables X and X ′ if P (X ′ ≤
D) ≤ P (X ≤ D) for any D, then X ′ is said to be
greater or more pessimistic than X which is denoted by
X ′ ' X . They showed that using more pessimistic execution
time distributions during analysis will result in a pessimistic
response time distribution and, therefore, will be a safe
approximation.

Theorem 1. The new distribution after sampling in ac-
cordance with equation (11) is greater than the original
distribution.

Proof: In our proposed simplification, since a portion
of the probability mass was moved to a larger execution time
value, the new random variable X ′ will have a cumulative
distribution function that is always less than or equal to
that of the original random variable. Therefore, the new

!777888

distribution will be greater than (') the original one and,
therefore, our subsequent analysis will be safe.

2) Parameter tuning: The number of samples, k, is a
parameter that should be tuned according to the time and
memory available. k ranges from 1 to the total number of
units available, N . When k = N , the analysis becomes ex-
act. On the other hand, when k = 1 the analysis approaches
the worst-case analysis which suffers from exaggerated
pessimism. Therefore, k has to be as large as possible given
that the memory and time available are sufficient to complete
the analysis using that k.

In this paper, we show how tuning the number of samples
could be used to provide different combinations of resource
requirements and analysis pessimism.

In order to determine the suitable k, a system designer is
supposed to collect a large number of different scenarios and
determine the highest k that does not lead to any memory
or time deficiency using the following simple algorithm:

1) Prepare a batch of different scenarios, s.
2) Initialize k to 1.
3) Analyze s using sampling analysis with k.
4) If analysis was successful k = k + 1 and go to step 3

else return k − 1
In step 4, a successful analysis is an analysis that is com-
pleted without requiring more memory than that available on
the hardware that will be used. The system designer could
also add, to such definition of success, a time efficiency
requirement. In that case, an analysis whose execution time
exceeds the maximum allowed time without causing any
memory problems will not be considered successful.

D. Implementation

In order to generate a sample from a random variable X
with the following probability mass function:

P{X = xj} = pj (13)

where j = 0, 1, ..., n, and
∑

j pj = 1, a random variable U ,
that is uniformly distributed over (0, 1), is generated. After
that, X is sampled as follows:

X =

x0 if U < p0

x1 if p0 ≤ U < p0 + p1

...
xj if

∑j−1
i=0 pi ≤ U <

∑j
i=0 pi

...

(14)

This sampling procedure is repeated k times for each
execution time distribution.

We note here that repeated samples should not exist
because this might lead to erroneous optimistic response
time distributions. To see what could go wrong if a repeated
sample was taken, consider the following execution time
distribution: {(1, 0.2); (2, 0.2); (3, 0.5); (4, 0.1)}, where for

each pair, the first value is the execution time of the job
and the second is its probability. If repeated samples are
allowed, a simplified distribution where k = 2 might be:
{(1, 0.4); (4, 0.6)} because (1, 0.2) pair was sampled twice.
The resultant simplified distribution is no longer greater than
(') the original distribution and, therefore, the analysis will
be unsafe. Therefore, it is of utmost importance to make
sure that the samples are all different. In this approach,
sampling is repeated till k distinct samples are produced
while neglecting any repetition.

E. Discussion

There are two options of sampling:
1) Sampling only one value-probability pair from each

execution time distribution, completing the analysis,
and then repeating the whole process for k times.

2) Sampling k value-probability pairs from each execu-
tion time distribution and then completing the analysis
at once.

The latter option is more efficient since the former one
passes through the whole analysis process each time and it
might be repeating previous computations.

To illustrate such defect, consider a simple task set giving
rise to three jobs that have the same priority and the same ex-
ecution time distribution: {(1, 0.5); (2, 0.4); (3, 0.1)}, while
being started at times 1, 2, and 3 respectively.

Using the former approach the analysis could have been
completed, in the first step, using the following samples:
(1, 0.5) for the first job, (1, 0.5) for the second job, and
(2, 0.4) for the third job. When the process is repeated
using new samples in the second step, the samples could be
(1, 0.5), (1, 0.5) and (1, 0.5). This means that, to compute
the backlog for the last job, adding the first two pairs will
be repeated twice and it is inefficient not to have saved the
result during the first step.

For such complexity, sampling k times in advance is more
efficient due to the inherited dynamic programming method
in the reuse of convolved distributions for outputting new
convolved distributions.

Using the same example while sampling in advance and
setting k to 1, the new simplified distributions after sampling
(ordered by job’s position) could be {(1, 0.5); (3, 0.5)},
{(1, 0.5); (3, 0.5)}, and {(2, 0.4); (3, 0.6)}. In this case, to
compute the backlog for the last job, the first two dis-
tributions are convolved to get the following distribution:
{(2, 0.25); (4, 0.5); (6, 0.25)}. This new distribution will be
used to get convolved with the last job’s simplified execution
time distribution. We note here that no repeated computa-
tions occurred. Therefore, sampling k times in advance is
more efficient.

To better understand the difference between the two
options, figure 3 shows an example of a process of iteratively
computing the backlog, where a node represents a value-
probability pair and an edge e{ni, nj} represents a single

!777999

Figure 3. Graph showing the computations and involved value-probability
pairs while iteratively computing the backlog

computation where ni is used to compute nj . The first
level represents the initial backlog distribution, whereas the
second level represents the new backlog distribution in the
second iteration, and so on. Each edge from one node i at a
certain level to another j in the lower level shows that node
i was used in a computation to contribute to the value of
node j.

When the sample is done in advance, each edge will be
visited once because after reaching a certain level during the
backlog computation iterations, the process never goes back.
Instead, the current backlog computed (in the level) is used
to be convolved with a new execution time distribution as it
was shown in section III.

However, while repeating the analysis k times using
single pairs, it is possible that e{n1, n2}, e{n2, n3}, and
e{n3, n4} are visited during the first step. After that,
e{n1, n2}, e{n2, n3}, and e{n3, n5} can be visited in the
second step. Thus, e{n1, n2}, e{n2, n3} are visited twice.
This shows that sampling k times in advance inherently
avoids repeated calculations as opposed to repeating the
analysis k times with single values.

F. Modified sampling

The high probable low execution time values are the most
effective for a good approximation. The philosophy behind
favoring low valued execution times is that such values will
probably contribute to the probability mass lying prior to the
deadline in the final computed response time because they
result in low response time values.

It is clear from eq. (10) that as the probability mass lying
before the deadline increases, the probability of missing the
deadline decreases. Decreasing the probability of missing
the deadline essentially decreases the pessimism of the
approximation.

Fortunately, sampling randomly from the exact distribu-
tions inherently favors high probable values. However, it
does not differentiate between low and high valued execution
times. We modify this approach to sampling from a gen-
erated distribution that puts some emphasis on low valued
execution times.

In order to decrease the pessimism, we have to work on
increasing the values lying before the deadline. Thus, low
execution time values are vital to decreasing the probability

of missing the deadline and therefore some emphasis is put
on them in this modified sampling procedure. The sampling
stage is modified by sampling from a modified distribution
that favors lower values. Each probability is modified by the
following equation:

p = p ÷ vΨ (15)

where v denotes the value possessing this probability, p.
Ψ denotes a positive favoring constant that is tuned to
determine the degree of favoring lower values. The bigger
the value of Ψ, the more low execution time values are
favored. In fact, when Ψ approaches zero, the modified
sampling turns out to be the premier sampling approach.
The modified probabilities are normalized in order to form
a valid probability distribution.

After modifying the distribution, the same method of
sampling based on equation (14) is used. We note here that
it is of utmost importance to replace the sampled probability
with the corresponding original one before starting the
analysis in order to be analyzing the original system.

We noticed that in some distributions there are two or
three samples constituting almost the whole probability
mass. Therefore, insisting on getting k distinct samples
might lead to a significant delay because these high probable
values will be always sampled. In the modified sampling
approach, we decided to sample k times and discard any
repetition. This avoids the re-sampling that might cause an
unfortunate delay.

V. SIMULATION

A. Task set generation

In order to conduct experimentation, task sets are gener-
ated. For each task, a uniformly distributed random variable
from 0 to 4 is generated and another one from 0 to 1 to
set Φi and Mi respectively. Moreover, another uniformly
distributed random variable from 1 to i is generated, to
set the priority of the task, where i is the number of the
generated task for the current generated task set. The worst-
case execution time, Emax, is generated uniformly to be
from 0 to 5, whereas the period is set to be exceeding
the worst-case execution time by ℵ, where ℵ is uniformly
distributed from 0 to 7. The deadline for the task is set using
the following equation: Di = Ti + ε, where ε is computed
by: ε = 10×U − 5, where U is a uniform random variable
from 0 to 1.

In order to generate the execution time distribution of the
task, a uniformly distributed random variable from 0 to 10
is generated and * is set to it, where * is the number of
significant units in the distribution. Each value-probability
pair for the * units is computed by generating two uniformly
distributed random variables from 0 to Emax and from 0 to
1 for the execution time value and its associated probability
respectively.

!888000

In order to avoid probabilities being culminated in one or
two pairs, we normalize the generated probabilities by *.
Subsequently, new value-probability pairs are added using
the same methodology but by normalizing probabilities
using an arbitrary large number to simulate the execution
time values that rarely occurs. New value-probability pairs
are generated till the summation of all probabilities reaches
unity.

The same method is used to add new tasks as long as
the added task does not cause the utilization to be greater
than one. If the new generated task will cause such increase,
the task set generation process is stopped and the generated
task set is saved. The whole process is repeated to generate
several task sets to be used either for simulation or parameter
tuning.

B. Quantity of pessimism

In order to compare the pessimism of all models, we
average the probability of missing the deadline of all the
tasks in each task set for each model. We name this quantity
the pessimism of the approach (ρ):

ρ =
N∑

i=1

P{Ri > Di}
N

where N denotes the number of tasks in the task set.

C. Results

We have generated 100 task sets randomly. The machine
used for simulation has a 1.60GHz processor and 224 MB
of RAM. Sixty nine of the generated cases were simple
enough not to cause a memory burst for the exact stochastic
analysis. Therefore such diminished set was used to compare
between the worst-case analysis, the stochastic analysis, and
the proposed sampling analysis whether while favoring low
execution time values or not.

The average hyper-period for the diminished set was about
77.36, whereas the maximum hyper-period was 400. For
the number of values in an execution time distribution,
the average was about 7.34, and the maximum was 10.
The maximum number of tasks, and jobs were 2, and 17
respectively, whereas the average number of jobs was about
5.5. The deadline was generated randomly but restricted to
be greater or smaller than the task period by no more than
5 time units. The utilization of all task sets was ensured to
be smaller than one.

Figure 4 shows sorted pessimism curves for all ap-
proaches. The x axis denotes the task set number, whereas
the y axis denotes the pessimism quantity.

One can see that the worst-case analysis is the most
pessimistic. On the other hand, the complete stochastic
analysis exact curve provides a lower bound. Any analysis
that is more optimistic than the exact curve is not safe. Thus,
we are looking forward to getting curves nearer to the exact
curve without being more optimistic than it.

For the sampling analysis, 4 samples were used and the
favoring constant, Ψ, was, by trial and error, set to 0.4.
The favoring constant was determined by trying several real
numbers not exceeding one, and selecting the value resulting
in less pessimistic results. If Ψ is set to a large value, low
execution time values dominate, and high probable ones
might not be normally favored. Therefore, searching for a
suitable value for Ψ was limited to values not exceeding
one. In our future work, we are planning to consider a more
efficient strategy for determining Ψ.

As shown in figure 4, the sampling analysis curves are by
far more optimistic than the worst-case analysis while being
practically feasible in terms of memory as presented later.
In addition, favoring low execution time values achieves a
mild enhancement since it decreased pessimism.

For the time comparison, figure 5 shows the sorted time
curves for all approaches. The x axis denotes the task set
number, whereas the y axis denotes the time taken to finish
the analysis in milliseconds (t).

In simple cases, all curves are comparable. However, in
more complex cases, the worst-case execution time is the
most efficient. Moreover, the complete stochastic analysis is
the least efficient.

Both sampling methods were significantly more efficient
than the exact analysis. In addition, the modified sampling
approach was less efficient than the sampling approach.
However, in some case, the modified sampling was more
efficient.

The reason for this is that, in the modified sampling,
the sampling method is not repeated if a repeated value
was sampled. However, in the normal sampling method,
sampling is repeated till k different values are sampled.
This has caused the modified sampling to be more efficient
in cases where only two or three values constitute a large
portion of the probability mass.

In order to study the effect of changing the number of
samples on pessimism, figures 6 and 7 show the sorted
pessimism curves while using different number of samples
using the sampling and the modified sampling methods
respectively. One can see here that as the number of samples
increases, the pessimism curve becomes less pessimistic.

However, sometimes the pessimism quantity, in figures 6
and 7, appears to be non-monotonic with respect to the
number of samples. This is because of the randomness of the
sampling process. Consider for example the following dis-
tribution: {(1, 0.4); (2, 0.2); (3, 0.2); (4, 0.2)}. A simplified
distribution with k = 1, in a case where the first pair was
sampled, could be {(1, 0.4); (4, 0.6)}. Another simplified
one with k = 2, in a case where the second and the third
pairs were sampled, could be {(2, 0.2), (3, 0.2), (4, 0.6)}.
One can see here that we were occasionally lucky in the
case of k = 1 and it happened that the resultant distribution
was not more pessimistic (') than that created with k = 2.
Additionally, in some execution time distributions, a single

!888!

Figure 4. Pessimism curves

Figure 5. Time curves

execution time value possesses almost the whole probability
mass. Therefore, insisting on getting k distinct samples
might cause an unfortunate delay that increases with k.

In addition, Figure 8 shows the worst-case memory de-
mand, M, while computing the backlog iteratively using
different number of samples. The x axis denotes the iteration
number, whereas the y axis denotes the memory demand
in 8 bytes (assuming that each value is stored in 8 bytes).
For example, when the number of samples is 4, the first
convolution will result in 16 values in the worst-case. The
second convolution will result in, at most, 16×4 values and
so on. The curve showing the memory demand for the one-
sample case is almost approaching zero and therefore not
clear from the figure. It is clear that the memory demand rate
of increase decreases as the number of samples decreases.
The analysis times with different number of samples were
comparable and therefore not shown.

Due to the fact that the number of samples affect the
memory demand and the degree of pessimism, it provides a
relation between computational resources and pessimism.

Figure 6. Pessimism curves using the sampling method for different
number of samples

Figure 7. Pessimism curves using the modified sampling method for
different number of samples

Figure 8. Worst-case backlog computation memory demand for different
number of samples

!888222

VI. CONCLUSION

In this paper, we have introduced a novel analysis tech-
nique that provides a relation between pessimism and com-
putational resources. By changing the number of samples,
one could increase or decrease the level of pessimism; and,
accordingly, the time, and memory needed to complete the
analysis. The proposed method is, by far, more optimistic
than the worst-case analysis approach.

In addition to this, it is practical in terms of memory, and
time since one could adjust it according to the memory, and
time availability. Moreover, we have introduced another vari-
ant of our sampling approach that favors low execution time
values. Favoring such values have caused a mild decrease
in pessimism while fixing the number of samples used, and,
accordingly, the memory demand. In the modified sampling
method, we discarded any repeated values as apposed to
insisting on getting k distinct samples by re-sampling. This
has avoided an occasional increase in the analysis time.

REFERENCES

[1] B. Lewis, Fundamentals of Embedded Software. Prentice
Hall, 2004, ch. 1.

[2] L. Liu and J. Layland, “Scheduling algorithms for multipro-
gramming in a hard real-time environment,” Journal ACM,
vol. 20, no. 1, 1972.

[3] J. Lehoczky, “Fixed priority scheduling of periodic task sets
with arbitrary deadlines,” in 11th IEEE real-time systems
symposium, 1990.

[4] K. Tindell, A. Burns, and A. Wellings, “An extendible ap-
proach for analyzing fixed priority hard real-time tasks,” Real-
Time Systems, vol. 6, 1994.

[5] J. López, J. Dı́az, J. Entrialgo, and D. Garcı́a, “Stochastic
analysis of real-time systems under preemptive priority-driven
scheduling,” Real-Time Systems, vol. 40, no. 2, 2008.

[6] G. Bernat, A. Colin, and S. Petters, “Wcet analysis of prob-
abilistic hard real-time systems,” in the 23rd IEEE Real-Time
Systems Symposium, 2002.

[7] A. Atlas and A. Bestavros, “Statistical rate monotonic
scheduling,” in 19th IEEE real-time systems symposium,
1998.

[8] L. Abeni and G. Buttazzo, “Stochastic analysis of a reser-
vation based system,” in 9th int workshop on parallel and
distributed real-time systems, 2001.

[9] S. Manolache, P. Eles, and Z. Peng, Real-time applications
with stochastic task execution times analysis and optimisa-
tion. Springer, 2007.

[10] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. W,
and J.-S. Liu, “Probabilistic performance guarantee for real-
time tasks with varying computation times,” in the real-time
technology and applications symposium, 1995.

[11] M. Gardner, “Probabilistic analysis and scheduling of critical
soft real-time systems,” Ph.D. dissertation, University of
Illinois, Urbana-Champaign, 1999.

[12] M. Gardner and J. Liu, “Analyzing stochastic fixed-priority
real-time systems,” in the 5th international conference on
tools and algorithms for the construction and analysis of
systems, 1999.

[13] J. Dı́az, D. Garcı́a, K. Kim, C.-G. Lee, L. L. Bello, J. M.
López, S. Min, and O. Mirabella, “Stochastic analysis of
periodic real-time systems,” in the 23rd IEEE Real-Time
Systems Symposium, 2002.

[14] J. Dı́az, J. M. López, M. Garcı́a, A. M. Campos, K. Kim, and
L. L. Bello, “Pessimism in the stochastic analysis of real-time
systems: Concept and applications,” in the IEEE Real-Time
Systems Symposium, 2004.

[15] W. A. Fuller, Sampling Statistics. Wiley, 2009, ch. 1.

!888333

