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Abstract: Motion forecasting for autonomous driving is a challenging task be-
cause complex driving scenarios result in a heterogeneous mix of static and dy-
namic inputs. It is an open problem how best to represent and fuse information
about road geometry, lane connectivity, time-varying traffic light state, and his-
tory of a dynamic set of agents and their interactions into an effective encoding.
To model this diverse set of input features, many approaches proposed to design
an equally complex system with a diverse set of modality specific modules. This
results in systems that are difficult to scale, extend, or tune in rigorous ways to
trade off quality and efficiency.

In this paper, we present Wayformer, a family of attention based architectures
for motion forecasting that are simple and homogeneous. Wayformer offers a
compact model description consisting of an attention based scene encoder and a
decoder. In the scene encoder we study the choice of early, late and hierarchical
fusion of input modalities. For each fusion type we explore strategies to trade
off efficiency and quality via factorized attention or latent query attention. We
show that early fusion, despite its simplicity of construction, is not only modality
agnostic but also achieves state-of-the-art results on both Waymo Open Motion
Dataset (WOMD) and Argoverse leaderboards, demonstrating the effectiveness
of our design philosophy.

Keywords: Motion Forecasting, Trajectory Prediction, Autonomous Driving,
Transformer, Robotics, Learning

1 Introduction
In this work, we focus on the general task of future behavior prediction of agents (pedestrians, vehi-
cles, cyclists) in real-world driving environments. This is an essential task for safe and comfortable
human-robot interactions, enabling high-impact robotics applications like autonomous driving.

Figure 1: The Wayformer architecture as a pair
of encoder/decoder Transformer networks. This
model takes multimodal scene data as input and
produces multimodal distribution of trajectories.

The modeling needed for such scene under-
standing is challenging for many reasons. For
one, the output is highly unstructured and
multimodal—e.g., a person driving a vehicle
could carry out one of many underlying in-
tents unknown to an observer, and representing
a distribution over diverse and disjoint possi-
ble futures is required. A second challenge is
that the input consists of a heterogeneous mix
of modalities, including agents’ past physical
state, static road information (e.g. location of
lanes and their connectivity), and time-varying
traffic light information.

Many previous efforts address how to model the
multimodal output [1, 2, 3, 4, 5, 6], and develop
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hand-engineered architectures to fuse different input types, each requiring their own preprocessing
(e.g., image rasterization [7, 2, 8]). Here, we focus on the multimodality of the input space, and
develop a simple yet effective modality-agnostic framework that avoids complex and heterogeneous
architectures, and leads to a simpler architecture parameterization. This compact description of a
family of architectures results in a simpler design space and allows us to more directly and effectively
control for trade-offs in model quality and latency by tuning model computation and capacity.

To keep complexity under control without sacrificing quality or efficiency, we need to find general
modeling primitives, which can handle multimodal features that exist in temporal and spatial dimen-
sions concurrently. Recently, several approaches proposed Transformer networks as the networks of
choice for motion forecasting problems [9, 10, 11, 12, 13]. While these approaches offer simplified
model architectures, they still require domain expertise and excessive modality specific tuning. [14]
proposed a stack of cross attention layers sequentially processing one modality at a time. The order
in which to process each modality is left to the designer and enumerating all possibilities is com-
binatorially prohibitive. [3] proposed using separate encoders for each modality, where the type of
network and its capacity is open for tuning on a per-modality basis. Then modalities’ embeddings
are flattened and one single vector is fed to the predictor. While these approaches allow for many
degrees of freedom, they increase the search space significantly. Without efficient network archi-
tecture search or significant human input and hand engineering, the chosen models will likely be
sub-optimal given that a limited amount of the modeling options have been explored.

Our experiments suggest the domain of motion forecasting conforms to Occam’s Razor. We show
state of the art results with the simplest design choices and making minimal domain specific as-
sumptions, which is in stark contrast to previous work. When tested in simulation and on real AVs,
these Wayformer models showed good understanding of the scene.

Our contributions can be summarized as follows:

• We design a family of models with two basic primitives: a self-attention encoder, where we
fuse one or more modalities across temporal and spatial dimensions, and a cross-attention
decoder, where we attend to driving scene elements to produce a diverse set of trajectories.

• We study three variations of the scene encoder that differ in how and when different input
modalities are fused.

• To keep our proposed models within practical real time constraints of motion forecasting,
we study two common techniques to speed up self-attention: factorized attention and latent
query attention.

• We achieve state-of-the-art results on both WOMD and Argoverse challenges.

2 Multimodal Scene Understanding
Driving scenarios consist of multimodal data, such as road information, traffic light state, agent
history, and agent interactions. In this section we detail the representation of these modalities in
our setup. For readability, we define the following symbols: A denotes the number of modeled
ego-agents, T denotes the number of past and current timesteps being considered in the history, with
a feature size Dm. For a modality m, we might have a 4th dimension (Sm) representing a “set of
contextual objects” (i.e. representations of other road users) for each modeled agent.

Agent History contains a sequence of past agent states along with the current state [A, T, 1, Dh].
For each timestep t ∈ T , we consider features that define the state of the agent e.g. x, y, velocity,
acceleration, bounding box and so on. We include a context dimension Sh = 1 for homogeneity.

Agent Interactions The interaction tensor [A, T, Si, Di] represents the relationship between
agents. For each modeled agent a ∈ A, a fixed number of the closest context agents ci ∈ Si

around the modeled agent are considered. These context agents represent the agents which influ-
ence the behavior of our modeled agent. The features in Di represent the physical state of each
context agents (as in Dh above), but transformed into the frame of reference of our ego-agent.

Roadgraph The roadgraph [A, 1, Sr, Dr] contains road features around the agent. Following [2],
we represent roadgraph segments as polylines, approximating the road shape with collections of line
segments specified by their endpoints and annotated with type information. We use Sr roadgraph
segments closest to the modeled agent. Note that there is no time dimension for the road features,
but we include a time dimension of 1 for homogeneity with the other modalities.
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(a) Late Fusion (b) Early Fusion (c) Hierarchical Fusion

Figure 2: Wayformer scene encoder fusing multimodal inputs at different stages. Late fusion dedi-
cates an attention encoder per modality while early fusion process all inputs within one cross modal
encoder. Finally, hierarchical fusion combines both the approaches.

Traffic Light State For each agent a ∈ A, traffic light information [A, T, Stls, Dtls] contains the
states of the traffic signals that are closest to that agent. Each traffic signal point tls ∈ Stls has
features Dtls describing the position and confidence of the signal.

3 Wayformer
We design the family of Wayformer models to consist of two main components: a Scene Encoder
and a Decoder. The scene encoder is mainly composed of one or more attention encoders that
summarize the driving scene. The decoder is a stack of one or more standard transformer cross-
attention blocks, in which learned initial queries are fed in, and then cross-attended with the scene
encoding to produce trajectories. Figure 1 shows the Wayformer model processing multimodal
inputs to produce scene encoding. This scene encoding serves as the context for the decoder to
generate k possible trajectories covering the multimodality of the output space.

Frame of Reference As our model is trained to produce futures for a single agent, we transform
the scene into an ego-centric frame of reference by centering and rotating the scene’s spatial features
around the ego-agent’s position and heading at the current time step.

Projection Layers Different input modalities may not share the same number of features, so we
project them to a common dimension D before concatenating all modalities along the temporal and
spatial dimensions [S, T ]. We found the simple transformation Projection(xi) = relu(Wxi + b),
where xi ∈ RDm , b ∈ RD, and W ∈ RD×Dm , to be sufficient. Concretely, given an input of shape
[A, T, Sm, Dm] we project its last dimension producing a tensor of size [A, T, Sm, D].

Positional Embeddings Self-attention is naturally permutation equivariant, therefore, we may
think of them as set-encoders rather than sequence encoders. However, for modalities where the
data does follow a specific ordering, for example agent state across different time steps, it is ben-
eficial to break permutation equivariance and utilize the sequence information. This is commonly
done through positional embeddings. For simplicity, we add learned positional embeddings for all
modalities. As not all modalities are ordered, the learned positional embeddings are initially set to
zero, letting the model learn if it is necessary to utilize the ordering within a modality.

3.1 Fusion
Once projections and positional embeddings are applied to different modalities, the scene en-
coder combines the information from all modalities to generate a representation of the environ-
ment. Concretely, we aim to learn a scene representation Z = Encoder({m0,m1, ...,mk}), where
mi ∈ RA×(T×Sm)×D, Z ∈ RA×L×D, and L is a hyperparameter.

However, the diversity of input sources makes this integration a non-trivial task. Modalities might
not be represented at the same abstraction level or scale: {pixels vs objects}. Therefore, some
modalities might require more computation than the others. Splitting compute and parameter count
among modalities is application specific and non-trivial to hand-engineer. We attempt to simplify
the process by proposing three levels of fusion: {Late, Early, Hierarchical}.

Late Fusion This is the most common approach used by motion forecasting models, where each
modality has its own dedicated encoder (See Figure 2). We set the width of these encoders to be
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(a) Encoder Blocks (b) Encoders

Figure 3: A summary of encoder architectures considered for Wayformer. (a) provides an overview
of different encoder blocks and (b) explains how these blocks are arranged to construct the encoder.

equal to avoid introducing extra projection layers to their outputs. Moreover, we share the same
depth across all encoders to narrow down the exploration space to a manageable scope. Transfer of
information across modalities is allowed only in the cross-attention layers of the trajectory decoder.

Early Fusion Instead of dedicating a self-attention encoder to each modality, early fusion reduces
modality specific parameters to only the projection layers (See Figure 2). In this paradigm, the scene
encoder consists of a single self-attention encoder (“Cross-Modal Encoder”), giving the network
maximum flexibility in assigning importance across modalities with minimal inductive bias.

Hierarchical Fusion As a compromise between the two previous extremes, capacity is split be-
tween modality-specific self-attention encoders and the cross-modal encoder in a hierarchical fash-
ion. As done in late fusion, width and depth is common across attention encoders and the cross
modal encoder. This effectively splits the depth of the scene encoder between modality specific
encoders and the cross modal encoder (Figure 2).

3.2 Attention
Transformer networks do not scale well for large multidimensional sequences due to two factors: (a)
Self-attention is quadratic in the input sequence length. (b) Position-wise Feed-forward networks are
expensive sub-networks. In the following sections, we discuss different speedups to the transformer
networks that will help us scale more effectively.

Multi-Axis Attention This refers to the default transformer setting which applies self-attention
across both spatial and temporal dimensions simultaneously (See Figure 3b), which we expect to
be the most expensive computationally. Computational complexity of early, late and hierarchical
fusions with multi-axis attention is O(S2

m × T 2).

Factorized Attention Computational complexity of the self-attention is a quadratic in input se-
quence length. This becomes more pronounced in multi-dimensional sequences, since each extra
dimension increases the size of the input by a multiplicative factor. For example, some input modal-
ities have both temporal and spatial dimensions, so the compute cost scales as O(S2

m × T 2). To
alleviate this, we consider factorized attention [15, 16] along the two dimensions. This exploits the
multidimensional structure of input sequences by applying self-attention over each dimension indi-
vidually, which reduces the cost of self-attention sub-network fromO(S2

m×T 2) toO(S2
m)+O(T 2).

Note that the linear term still tends to dominate if
∑

m Sm × T << 12×D [17].

While factorized attention has the potential to reduce computation compared to multi-axis attention,
it introduces complexity in deciding the order in which self-attention is applied to each dimension.
In our work, we compare two paradigms of factorized attention (see Figure 3b):

• Sequential Attention: an N layer encoder consists of N/2 temporal encoder blocks fol-
lowed by another N/2 spatial encoder blocks.

• Interleaved Attention: anN layer encoder consists of temporal and spatial encoder blocks
alternating N/2 times.

Latent Query Attention Another approach to address the computational costs of large input se-
quences is to use latent queries [18, 19] in the first encoder block, where input x ∈ RA×Lin×D is
mapped to latent space z ∈ RA×Lout×D. These latents z ∈ RA×Lout×D are processed further by a
series of encoder blocks that take in and return arrays in this latent space (see Figure 3a). This gives

4



us full freedom to set the latent space resolution, reducing the computational costs of the both self-
attention component and the position-wise feedforward network of each block. We set the reduction
value (R = Lout/Lin) to be a percentage of the input sequence length. Reduction factor R is kept
constant across all the attention encoders in late and hierarchical fusions.

3.3 Trajectory Decoding
As our focus is on how to integrate information from different modalities in the encoder, we simply
follow the training and output format of [2, 3], where the Wayformer predictor outputs a mixture
of Gaussians to represent the possible trajectories an agent may take. To generate predictions, we
use a Transformer decoder which is fed a set of k learned initial queries (Si ∈ Rh)ki=1 and cross
attends them with the scene embeddings from the encoder in order to generate embeddings for each
component in the output mixture of Gaussians.

Given the embedding Yi for a particular component of the mixture, we estimate the mixture like-
lihood with a linear projection layer that produces the unnormalized log-likelihood for the compo-
nent. To generate the trajectory, we project Yi using another linear layer to output 4 time series:
Ti = {µt

x, µ
t
y, log σ

t
x, log σ

t
y}Tt=1 corresponding to the means and log-standard deviations of the

predicted Gaussian at each timestep.

During training, we follow [2, 3] in decomposing the loss into separate classification and regression
losses. Given k predicted Gaussians (Ti)ki=1, let î denote the index of the Gaussian with mean closest
to the ground truth trajectory G. We train the mixture likelihoods on the log likelihood of selecting
the index î, and the Gaussian Tî to maximize the log-probability of the ground truth trajectory.

max log Pr(̂i | Y )︸ ︷︷ ︸
classification loss

+ log Pr(G|Tî)︸ ︷︷ ︸
regression loss

. (1)

3.4 Trajectory Aggregation
If the predictor outputs a GMM with many modes, it can be difficult to reason about a mixture
with so many components, and the benchmark metrics often restrict the number of trajectories being
considered. During evaluation, we thus apply trajectory aggregation following [3] in order to reduce
the number of modes being considered while still preserving the diversity in the original output
mixture. We refer the reader to Appendix C and [3] for details of the aggregation scheme.

4 Experimental Setup
4.1 Datasets
Waymo Open Motion Dataset (WOMD) consists of 1.1M examples time-windowed from 103K
20s scenarios derived from real-world driving in urban and suburban environments. Each example
consists of 1 second of history state and 8 seconds of future, which we resample at 5Hz. The object-
agent state contains attributes such as position, agent dimensions, velocity and acceleration vectors,
orientation, angular velocity, and turn signal state. The long (8s) time horizon in this dataset tests
the model’s ability to capture a large field of view and scale to a large output space of trajectories.

Argoverse Dataset consists of 333K scenarios containing trajectory histories, context agents, and
lane centerline inputs for motion prediction. The trajectories are sampled at 10Hz, with 2 seconds
of history and a 3-second future prediction horizon.

4.2 Training Details and Hyperparameters
We compare models using competition specific metrics associated with these datasets (see Ap-
pendix E). For all metrics, we consider only the top k = 6 most likely modes output by our model
(after trajectory aggregation) and use only the mean of each mode.

For all experiments, we train models using the AdamW optimizer [20] with an initial learning rate
of 2e-4 and linearly decaying to 0 over 1M steps. We train models using 16 TPU v3 cores each, with
a batch size of 16 per core, resulting in a total batch size of 256 examples per step.

To vary the capacity of the models, we consider hidden sizes among {64, 128, 256} and depths
among {1, 2, 4} layers. We fix the intermediate size in the feedforward network of the Transformer
block to be either 2 or 4 times the hidden size.
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Figure 4: MinADE of different fusion
models with multi-axis attention.

For our architecture study in Sections (5.1-5.3), each pre-
dictor outputs a mixture of Gaussians withm = 6 compo-
nents, with no trajectory aggregation. For our benchmark
results in Section 5.4, each predictor outputs a mixture
of Gaussians with m = 64 components, and we prune
the mixture components using the trajectory aggregation
scheme described in Section 3.4. For experiments with
latent queries, we experiment with reducing the original
input resolution to 0.25, 0.5, 0.75 and 0.9 times the orig-
inal sequence length. We include a full description of hy-
perparameters in Appendix B.

5 Results
In this Section, we present experiments that demonstrate
the trade-offs of combining different fusion strategies
with vanilla self-attention (multi-axis) and more opti-
mized methods such as factorized attention and learned
queries. In our ablation studies (Section 5.1-5.3), we
trained models with varying capacities (0.3M-20M pa-
rameters) for 1M steps on WOMD. We report their inference latency on a current generation GPU,
capacity, and minADE as a proxy of quality.

5.1 Multi-Axis Attention
In these experiments, we train Wayformer models on early, hierarchical and late fusion (Section
3.1) in combination with multi-axis attention. In Figure (4a), we show that for models with low
latency (x ≤ 16 ms), late fusion represents an optimal choice. These models are computationally
cheap since there is no interaction between modalities during the scene encoding step. Adding the
cross modal encoder for hierarchical models unlocks further quality gains for models in the range
(16ms < x < 32ms). Finally, we can see that early fusion can match hierarchical fusion at higher
computational cost (x > 32ms). We then study the model quality as a function of capacity, as
measured by the number of trainable parameters (Figure 4b). Small models perform best with early
fusion, but as model capacity increases, sensitivity to the choice of fusion decreases dramatically.

5.2 Factorized Attention
To reduce the computational budget of our models, we train models with factorized attention instead
of jointly attending to spatial and temporal dimensions together. When combining different modali-
ties together for the cross modal encoder, we first tile the roadgraph modality to a common temporal
dimension as the other modalities, then concatenate modalities along the spatial dimension. After
the scene encoder, we pool the encodings over the time dimension before feeding to the predictor.
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(b) Late Fusion.
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Figure 5: Factorized attention improves quality, but only speeds up late fusion models.
We study two types of factorized attention: sequential, interleaved (Figure 5). First, we observe
that both sequential and interleaved factorized attention perform similarly across all types of fusion.
Second, we are surprised to see quality gains from applying factorized attention to the early and late
fusion cases (Figures 5a, 5b). Finally, we only observe latency improvements for late fusion models
(Figure 5b), since tiling the road graph to the common temporal dimension in cross-modal encoder
used in early and hierarchical fusion significantly increases the count of tokens.

5.3 Latent Queries
In this study, we train models with multi-axis latent query encoders with varying levels of input
sequence length reduction in the first layer as shown in Figure 5. The number of the latent queries
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is calculated to be a percentage of the input size of the Transformer network with 0.0% indicating
the baseline models (multi-axis attention with no latent queries as presented in Figure 4).
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(b) Late Fusion.
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Figure 6: Latent queries reduce models’ latency without significant degradation to the quality.

Figure 6 shows the results of applying latent queries, which speeds up all fusion models by 2x-16x
times with minimal to no quality regression. Early and hierarchical fusion still produce the best
quality results, showing the importance of the cross modal interaction stage.

5.4 Benchmark Results
We validate our learnings by comparing Wayformer models to competitive models on popular bench-
marks of motion forecasting. We choose early fusion models since they match the quality of the
hierarchical models without increased complexity of implementation. Moreover, as models’ capac-
ity increases they are less sensitive to the choice of fusion (See Figure 4b). We use latent queries
since they speed up models without noticeable quality regression and, in some models, we combine
them with factorized attention (see Appendix A) since that improves the quality further. We further
apply ensembling, a standard practice for producing SOTA results for leaderboard submissions. Full
hyperparameters for Wayformer models reported on benchmarks are reported in Appendix D.

When ensembling for WOMD, the model has a single shared encoder but uses N = 3 separate
Transformer decoders. To merge predictions over the ensemble, we simply combine all mixture
components from each predictor to get a total of N × 64 modes, and renormalize the mixture prob-
abilities. We then apply our trajectory aggregation scheme (section 3.4) to the combined mixture
distribution to reduce the number of output modes to the desired count k = 6.

In Table 1, we present results on the Waymo Open Motion Dataset and Argoverse Dataset. We use
the standard metrics used for the each dataset for their respective evaluation (see Appendix E). For
the Waymo Open Motion Dataset, both Wayformer early fusion models outperform other models
across all metrics; early fusion of input modalities results in better overall metrics independent of
the attention structure (multi-axis or factorized attention).

For Argoverse leaderboard, we train 15 replicas each with its own encoder and N = 10 transformer
decoders. To merge predictions over N decoders we follow the aggregation scheme in section 3.4
to result in k = 6 modes for each model. We then ensemble 15 such replicas following the same
aggregation scheme (section 3.4) to reduce N × 6 modes to k = 6.

Waymo Open Motion Dataset Argoverse Dataset
Models minFDE (↓) minADE (↓) MR (↓) Overlap (↓) mAP∗ (↑) Brier-minFDE∗ (↓) minFDE (↓) MR (↓) minADE (↓)
SceneTransformer [11] 1.212 0.612 0.156 0.147 0.279 1.8868 1.2321 0.1255 0.8026
DenseTNT [21] 1.551 1.039 0.157 0.178 0.328 1.9759 1.2858 0.1285 0.8817
MultiPath [2] 2.040 0.880 0.345 0.166 0.409 - - - -
MultiPath++ [3] 1.158 0.556 0.134 0.131 0.409 1.7932 1.2144 0.1324 0.7897
LaneConv - - - - - 2.0539 1.3622 0.1600 0.8703
LaneRCNN [22] - - - - - 2.1470 1.4526 0.1232 0.9038
mmTransformer [14] - - - - - 2.0328 1.3383 0.1540 0.8346
TNT [23] - - - - - 2.1401 1.4457 0.1300 0.9400
DCMS [24] - - - - - 1.7564 1.1350 0.1094 0.7659

Wayformer
Early Fusion

Attention
LQ + Multi-Axis 1.128 0.545 0.123 0.127 0.419 1.7408 1.1615 0.1186 0.7675
LQ + Factorized 1.126 0.545 0.123 0.127 0.412 1.7451 1.1625 0.1192 0.7672

Table 1: Wayformer models and select SOTA baselines on Waymo Open Motion Dataset 2021 and
Argoverse 2021. * denotes the metric used for leaderboard ranking. LQ denotes latent query.

6 Related Work
Motion prediction architectures : Increasing interest in self-driving applications and the avail-
ability of benchmarks [25, 26, 27] has allowed motion prediction models to flourish. Successful
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modeling techniques fuse multi-modal inputs that represent different static, dynamic, social and
temporal aspects of the scene. One class of models draws heavily from the computer vision liter-
ature, rendering inputs as a multichannel rasterized top-down image [4, 2, 28, 29, 7, 23]. In this
approach, relationships between scene elements are rendered in the top down orthographic plane
and modeled via spatio-temporal convolutional networks. However, the localized structure of con-
volutions is well suited to processing image inputs, but is not effective at capturing the long range
spatio-temporal relationships. A popular alternative is to use an entity-centric approach, where agent
state history is typically encoded via sequence modeling techniques like RNNs [10, 30, 31, 32] or
temporal convolutions [33]. Road elements are approximated with basic primitives (e.g. piece-
wise linear segments) which encode pose and semantic information. Modeling relationships be-
tween entities is often presented as an information aggregation process, and models employ pooling
[23, 34, 31, 35, 10, 28], soft-attention [10, 23] or graph neural networks [36, 33, 30]. Like our
proposed method, several recent models use Transformers [37], which are a popular state-of-the-art
choice for sequence modeling in NLP [38, 39], and have shown promise in core computer vision
tasks such as detection [40, 41, 42], tracking [43] and classification [41, 44].

Iterative cross-attention A recent approach to encode multi-modal data is to sequentially process
one modality at a time [14, 19, 9]. [14] ingests the scene in the order {agent history, nearby agents,
map}; they argue that it is computationally expensive to perform self-attention over multiple modali-
ties at once. [9] pre-encodes the agent history and contextual agents through self-attention and cross-
attends to the map with agent encodings as queries. The order of self-attention and cross-attention
relies heavily on the designer’s intuition and has, to our knowledge, not been ablated before.

Factorized Attention Flattening high dimensional data leads to long sequences which make self-
attention computationally prohibitive. [16] proposed limiting each attention operation to a single
axes to alleviate the computational costs and applied this technique to autoregressive generative
modeling for images. Similarly, [15] factorize the spatial and temporal dimensions of the video
input when constructing their self-attention based classifier. This axis based attention, which gets
applied in interleaved fashion across layers, has been adopted in Transformer-based motion fore-
casting models [9] and graph neural network approaches [12]. The order of applying attention over
{temporal, social/spatial} dimensions has been studied with two different common patterns: (a)
Temporal first [31, 35, 45] (b) Social/Spatial first [46, 47]. In Section 3.2, we study a ‘sequential’
mode and contrast it with interleaved mode where interleave dimensions of attention similar to [9].

Multimodal Encoding [13] argued that attending to temporal and spatial dimensions indepen-
dently leads to loss of information. Moreover, allowing all inputs to self-attend to each other early
on the encoding process reduces complexity and the need to handcraft architectures to address the
scaling of computation for transformers with the increase in the input sequence length [48]. How-
ever, self-attention is known to be computationally expensive for large inputs [49], and recently there
has been huge interest in approaches improving its scalability. For a complete discussion of previ-
ous works, we refer the reader to the comprehensive survey [50]. One compelling approach is to
use learned latent queries to decouples the number of query vectors of a Transformer encoder from
the original input sequence length [18]. This allows us to set the resolution of the Transformer out-
put to arbitrary scales independent of the input, and flexibly tune model computational costs. This
approach is appealing since it does not assume any structure in the input and has proven effective
in fusing multimodal inputs [48]. We take inspiration from such frameworks and present a study of
their benefits when applied to the task of motion forecasting in the self-driving domain.

7 Limitations
Scope of the current study is subject to the following limitations: (1) Ego-centric modeling is subject
to repeated computations on dense scenes. This can be alleviated by encoding the scene only once in
a global frame of reference. (2) Our system input is a sparse abstract state description of the world,
which fails to capture some important nuances in highly interactive scenes, e.g., visual cues from
pedestrians or fine-granularity contour or wheel angle information for vehicles. Learning perception
and prediction end-to-end could unlock improvements. (3) We model the distribution over possible
futures independently per agent, and temporally conditionally independent for each agent given
intent. These simplifying assumptions allow for efficient computation but fail to fully describe
combinatorially many futures. Multi-agent, temporally causal models could show further benefits in
interactive situations.
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Appendix

A Factorized Latent Query Attention
Figure 7a shows the implementation of Factorized latent query attention encoder blocks and Fig-
ure 7b shows how they are used in constructing the encoders. Specifically in factorized attention
(sequential or interleaved), the first temporal encoder block and the first spatial encoder blocks in
Figure 3 are replaced with temporal latent query encoder block and spatial latent query encoder
block respectively.

(a) Encoder Blocks (b) Encoders

Figure 7: A summary of encoder architectures considered for Wayformer. (a) provides an overview
of different encoder blocks and (b) explains how these blocks are arranged to construct the encoder.

B Hyperparameters

Hyperparameter Values
Hidden size {128, 256, 512}
Intermediate size {2x, 4x} hidden size
Num encoder layers [2, 16]
Num decoder layers [2, 16]
Latent query ratio {0.25, 0.5, 0.75 1.0}
Number GMM modes 64
Optimizer AdamW
Initial learning rate 2e-4
Training steps 1000000
Learning rate decay linear
Batch size 256

Table 2: Model and training hyperparameters across all ablation experiments done on WOMD.

Hyperparameter WOMD Argoverse
Max num history timesteps 11 20
(including current timestep)
Max num roadgraph feats 512 1024
Max num context agents 64 64
Max num traffic lights 32 32

Table 3: Hyperparameters for generating WOMD and Arogverse input features. Fixed for all exper-
iments
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C Trajectory Aggregation Details
Given a distance threshold D, the trajectory aggregation scheme attempts to first select the fewest
centroid modes such that all output modes are within a final distance D away from the nearest
centroid. The aggregation algorithm iteratively selects centroid modes by greedily selecting the
output mode that covers the maximum total likelihood out of the uncovered modes, and proceeds
until all output modes have been covered.

After initializing these k centroid modes, the aggregation algorithm then proceeds into a refinement
stage and runs another iterative procedure similar to k-means clustering starting from the initial
centroid modes. In each iteration, each centroid mode becomes of the weighted average of all
output modes assigned to it, and then output modes are reassigned to the new closest centroid mode.

D SOTA Wayformer Details
We describe the the hyperparameters used for WOMD and Argoverse benchmark results in Tables 4
and 5 respectively.

Hyperparameter Multi-axis Latent Query Factorized Latent Query
Hidden size 256 256
Intermediate size 1024 1024
Num encoder layers 2 4
Num decoder layers 8 4
Latent queries 192 4 time latents, 192 spatial latents
Number GMM modes 64 64
Ensemble size 3 3
Optimizer AdamW AdamW
Initial learning rate 2e-4 2e-4
Learning rate decay linear linear
Training steps 1200000 1000000
Batch size 256 256
Aggregation initial distance threshold 2.3 2.3
Aggregation refinement iterations 3 3
Aggregation max num trajectories 6 6

Table 4: Model and training hyperparameters for benchmark experiments on Waymo Open Motion
2021 Dataset

E Metrics
We compare models using competition specific metrics associated with these datasets. For all met-
rics, we consider only the top k = 6 most likely modes output by our model (after trajectory aggre-
gation) and use only the mean of each mode.

Specifically, we report the following metrics taken from the evaluation procedure used in the stan-
dard evaluations based on the dataset being used.

minDEt
k (Minimum Distance Error): Considers the top-k most likely trajectories output by the

model, and computes the minimum distance to the ground truth trajectory at timestep t.

MRt (Miss Rate): For each predicted trajectory, we compute whether it is sufficiently close to the
predicted agent’s ground truth trajectory at time t. Miss rate as the proportion of predicted agents for
which none of the predicted trajectories are sufficiently close to the ground truth. We defer details
of how a trajectory is determined to be sufficiently close to the WOMD metrics definition [27].

minADEk (Minimum Average Distance Error): Similar tominDEt
k , but the distance is calculated

as an average over all timesteps.

mAP: For each set of predicted trajectories, we have at most one positive - the one closest to the
ground truth and which is within τ distance from the ground truth. The other predicted trajecto-
ries are reported as misses. From this, we can compute precision and recall at various thresholds.
Following WOMD metrics definition [27] the agents future trajectories are partitioned into behavior
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Hyperparameter Multi-axis Latent Query Factorized Latent Query
Encoder Hidden size 128 256
Encoder Intermediate size 512 1536
Decoder Hidden size 128 128
Decoder Intermediate size 512 768
Num encoder layers 4 4
Num decoder layers 6 6
Latent queries 1024 6 time latents, 192 spatial latents
Number GMM modes 6 6
Ensemble size 10 10
Optimizer AdamW AdamW
Initial learning rate 2e-4 2e-4
Learning rate decay linear linear
Training steps 1000000 1000000
Batch size 4 4
Aggregation initial distance threshold 2.9 2.9
Aggregation refinement iterations 5 5
Aggregation max num trajectories 6 6

Table 5: Model and training hyperparameters for benchmark experiments on Argoverse 2021
Dataset.

buckets, and an area under the precision-recall curve is computed using the possible true positive
and false positives per agent, giving us Average Precision per behavior bucket. The total mAP value
is a mean over the AP’s for each behavior bucket.

Overlapt: The fraction of timesteps of the most likely trajectory prediction for which the prediction
overlaps with the corresponding timestep real future trajectory of another agent.

minFDE (Minimum Final Displacement Error): The L2 distance between the endpoint of the best
forecasted trajectory and the ground truth.

brier−minFDE: is defined as the sum of minFDE and the brier score (1 − p)2, where p is the
probability of the best-predicted trajectory.

F Qualitative Wins
In this section, we present some examples of Wayformer (WF) predictions on WOMD scenes in
comparison with MultiPath++ (MP++) model [3]. In all the following examples, (a) Hue indicates
time horizon (0s - 8s), while transparency indicates probability. (b) Rectangles indicate vehicles,
and squares indicate pedestrians or cyclists.
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(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 8: This scenario represents a multi-lane road with a parking lot on the left side. Here, we
see that WF’s performance on several vehicles is more safe and road following than that of MP++.
For example: (a) Vehicle A is seen merging onto the road coming out of a parking lot. MP++’s
predictions are completely off-road while WF’s predictions follow rules of the road. (b) Vehicles B,
C, and D’s predictions overlap with each other for MP++ predicting collision with each other. But,
WF correctly predicts that D yields for the vehicle before, C yields for D and B yields for C. (c)
MP++’s predictions for vehicle E navigating the parking lot go through an already parked vehicles,
while WF understands the interactions better and produces predictions which are not colliding.

(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 9: This scenario represents a T intersection. Here we see (a) a cyclist B, making a left turn.
MP++’s predictions are off-road and going beyond the available road. But, WF’s predictions follow
rules of the road and present multiple speed profiles for the same action of taking a left turn. (b) We
also see better predictions for a pedestrian (pedestrian A) where MP++ predicts that the pedestrian
is going to walk onto the road with oncoming traffic. But, WF’s predictions are constrained to the
side walk. (c) In addition, we also notice that WF’s predicts safe futures for vehicles C, D and E in
comparison with MP++.
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(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 10: This scenario represents a vehicle (agent A) turning into a parking structure. MP++’s
prediction discounts the presence of other parked vehicles and some predictions are made through
the parked agents. WF models these interactions better and only predicts trajectories that do not
collide with other parked entities.

(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 11: This scenario represents a busy 4-way intersection. First we discuss the WF improve-
ments for pedestrian trajectory predictions. MP++ predicts pedestrian (A) as going into the oncom-
ing vehicle demonstrating it fails to model this spatial interaction. WF demonstrates how the same
pedestrian crosses in-front of this stopped vehicle and continues to walk on the corsswalk on the
opposite side of the road. Pedestrian (agent B and C) on the lower left corner of the image show
similar behavior. MP++ predicts them to bump into cars parked right next to them and walk onto
the road surface towards oncoming traffic. WF on the other hand predicts nice and consistent along
road trajectories for these pedestrians. We now observe the predicts for a vehicle (agent D) in this
scene. MP++ predicts the trajectories of this vehicle to collide both with the static car in-front of it
as well as the pedestrian passing in-front on that car. WF models all these spatial interactions well
and predicts the trajectories for these car to wait behind the car in-front of it and not nudge into the
pedestrian crossing in-front.
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(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 12: This scenario represents a comlpex 4-way intersection with lots of cars passing through.
Similar to Fig- 11 we see MP++ predicting trajectories for vehicles (agent A, B, C an d D) in the
scene to collide with cars in-front of them. WF demonstrates very sophisticated behavior. For agent
A, it is able to estimate that the car parked in-front of agent A is a double-parked vehicle and there
is space on the road next to it, so it predicts trajectories that nudge around it. For B, C and D it is
able to carefully model the rules of the road and allow either oncoming ( in case of agent B) or cross
traffic ( in case of agent C and D) to take precedence and predicts yielding trajectories for them.

(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 13: In this scenario we observe that MP++ is not able to model the future of the vehicle (agent
A) entering the parking lane and outputs a multi-modal equally likely future for this agent. WF
understands the roadgraph interaction much better and outputs trajectories that have high likelihood
that agent A is entering the parking lane.
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(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 14: We see agents A, B, and C are waiting behind a stationary vehicle. WF predicts agent
A will nudge around the stationary vehicle to make progress, while MP predicts the agents will
proceed through the stationary vehicle. Additionally, MP predicts agent D could proceed off the
road, while WF predicts it to follow the road behind agent C.

(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 15: Multiple pedestrians, including agent B, are crossing the road and both MP++ and WF
predict car A wants to make a left turn through that crosswalk. WF predicts car A will start to
turn, then wait as the pedestrians cross, while MP++ predicts that car A will proceed through the
crosswalk even as the pedestrians are crossing.
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(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 16: This shows a busy intersection, with both WF and MP++ predicting vehicles in the left-
right road (i.e. agent D) are either proceeding straight or left turning. However, MP++ predicts agent
A to try to make a left turn directly into the flow of traffic, including through other cars left turning,
while WF predicts agent A will wait. Additionally, MP++ predicts agent B will try to proceed
through the vehicle waiting in front of it, while WF instead predicts it either remaining stationary or
nudging to the adjacent lane. Furthermore, WF also predicts agent D to potentially make a U-turn
that goes through the corner of the sidewalk near agent C (highlighted by the red arrow).

(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 17: This scenario represents a 4-way intersection. (a) At the intersection vehicles A, B, C and
D are all stopped at the intersection due to signal. WF takes this into account and predicts yielding
behavior. Vehicle D yielding for the light, Vehicle C yielding for B, Vehicle B yielding for A and
Vehicle A yielding for the vehicle in-front. But, MP++’s predictions for the same agents go through
the intersection (Vehicle D) and for vehicles A, B and C, they pass through the vehicles in-front. (b)
We see similar behaivor on the other side of the intersection, where vehicle E’s WF predictions are
yielding and MP++ predictions are passing through vehicles in the front.
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(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 18: This scenario represents a T intersection with narrow roads and parked cars. In this
highly interactive scene, we observe that (a) a parked vehicle (vehicle A) is trying to merge into
traffic. WF predicts nudging around already parked cars and merging onto the traffic, while MP++
predictions pass through the parked cars in front of A. (b) In addition, we also see that for vehicle
B WF predicts that nudges around the vehicle in front while MP++ predictions go through the car
in-front. (c) For vehicles C, D and E, WF predicts yielding behavior (C yielding for B, D yielding
for car in the front and E yielding for D), while MP++ predictions go through the vehicles in front.

(a) MultiPath++ (MP++) (b) Wayformer (WF)

Figure 19: This scenario represents a very busy 4-way intersection with clusters of pedestrians
(A, B). Both these clusters are pedestrians crossing the signal from either side of the road. We
observe that MP++ prediction’s are more distributed, some of them going through already stopped
vehicles (vehicles C and D) at the intersection. But, WF understands the presence of other vehicles
and produces predictions which do not cross through them. We also see that WF’s predictions for
vehicle C yield to pedestrians while MP++’s predictions do not.
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